當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.is_nan方法代碼示例

本文整理匯總了Python中tensorflow.is_nan方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.is_nan方法的具體用法?Python tensorflow.is_nan怎麽用?Python tensorflow.is_nan使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.is_nan方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: filter_groundtruth_with_nan_box_coordinates

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_nan [as 別名]
def filter_groundtruth_with_nan_box_coordinates(tensor_dict):
  """Filters out groundtruth with no bounding boxes.

  Args:
    tensor_dict: a dictionary of following groundtruth tensors -
      fields.InputDataFields.groundtruth_boxes
      fields.InputDataFields.groundtruth_classes
      fields.InputDataFields.groundtruth_is_crowd
      fields.InputDataFields.groundtruth_area
      fields.InputDataFields.groundtruth_label_types

  Returns:
    a dictionary of tensors containing only the groundtruth that have bounding
    boxes.
  """
  groundtruth_boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]
  nan_indicator_vector = tf.greater(tf.reduce_sum(tf.to_int32(
      tf.is_nan(groundtruth_boxes)), reduction_indices=[1]), 0)
  valid_indicator_vector = tf.logical_not(nan_indicator_vector)
  valid_indices = tf.where(valid_indicator_vector)

  return retain_groundtruth(tensor_dict, valid_indices) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:24,代碼來源:ops.py

示例2: filter_groundtruth_with_nan_box_coordinates

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_nan [as 別名]
def filter_groundtruth_with_nan_box_coordinates(tensor_dict):
  """Filters out groundtruth with no bounding boxes.

  Args:
    tensor_dict: a dictionary of following groundtruth tensors -
      fields.InputDataFields.groundtruth_boxes
      fields.InputDataFields.groundtruth_classes
      fields.InputDataFields.groundtruth_keypoints
      fields.InputDataFields.groundtruth_instance_masks
      fields.InputDataFields.groundtruth_is_crowd
      fields.InputDataFields.groundtruth_area
      fields.InputDataFields.groundtruth_label_types

  Returns:
    a dictionary of tensors containing only the groundtruth that have bounding
    boxes.
  """
  groundtruth_boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]
  nan_indicator_vector = tf.greater(tf.reduce_sum(tf.to_int32(
      tf.is_nan(groundtruth_boxes)), reduction_indices=[1]), 0)
  valid_indicator_vector = tf.logical_not(nan_indicator_vector)
  valid_indices = tf.where(valid_indicator_vector)

  return retain_groundtruth(tensor_dict, valid_indices) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:26,代碼來源:ops.py

示例3: filter_groundtruth_with_nan_box_coordinates

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_nan [as 別名]
def filter_groundtruth_with_nan_box_coordinates(tensor_dict):
  """Filters out groundtruth with no bounding boxes.

  Args:
    tensor_dict: a dictionary of following groundtruth tensors -
      fields.InputDataFields.groundtruth_boxes
      fields.InputDataFields.groundtruth_instance_masks
      fields.InputDataFields.groundtruth_classes
      fields.InputDataFields.groundtruth_is_crowd
      fields.InputDataFields.groundtruth_area
      fields.InputDataFields.groundtruth_label_types

  Returns:
    a dictionary of tensors containing only the groundtruth that have bounding
    boxes.
  """
  groundtruth_boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]
  nan_indicator_vector = tf.greater(tf.reduce_sum(tf.to_int32(
      tf.is_nan(groundtruth_boxes)), reduction_indices=[1]), 0)
  valid_indicator_vector = tf.logical_not(nan_indicator_vector)
  valid_indices = tf.where(valid_indicator_vector)

  return retain_groundtruth(tensor_dict, valid_indices) 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:25,代碼來源:ops.py

示例4: get_cubic_root

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_nan [as 別名]
def get_cubic_root(self):
    # We have the equation x^2 D^2 + (1-x)^4 * C / h_min^2
    # where x = sqrt(mu).
    # We substitute x, which is sqrt(mu), with x = y + 1.
    # It gives y^3 + py = q
    # where p = (D^2 h_min^2)/(2*C) and q = -p.
    # We use the Vieta's substution to compute the root.
    # There is only one real solution y (which is in [0, 1] ).
    # http://mathworld.wolfram.com/VietasSubstitution.html
    # assert_array = \
    #   [tf.Assert(tf.logical_not(tf.is_nan(self._dist_to_opt_avg) ), [self._dist_to_opt_avg,]), 
    #   tf.Assert(tf.logical_not(tf.is_nan(self._h_min) ), [self._h_min,]), 
    #   tf.Assert(tf.logical_not(tf.is_nan(self._grad_var) ), [self._grad_var,]),
    #   tf.Assert(tf.logical_not(tf.is_inf(self._dist_to_opt_avg) ), [self._dist_to_opt_avg,]), 
    #   tf.Assert(tf.logical_not(tf.is_inf(self._h_min) ), [self._h_min,]), 
    #   tf.Assert(tf.logical_not(tf.is_inf(self._grad_var) ), [self._grad_var,])]
    # with tf.control_dependencies(assert_array):
    # EPS in the numerator to prevent momentum being exactly one in case of 0 gradient
    p = (self._dist_to_opt_avg + EPS)**2 * (self._h_min + EPS)**2 / 2 / (self._grad_var + EPS)
    w3 = (-tf.sqrt(p**2 + 4.0 / 27.0 * p**3) - p) / 2.0
    w = tf.sign(w3) * tf.pow(tf.abs(w3), 1.0/3.0)
    y = w - p / 3.0 / (w + EPS)
    x = y + 1
    return x 
開發者ID:JianGoForIt,項目名稱:YellowFin,代碼行數:26,代碼來源:yellowfin.py

示例5: _target_class_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_nan [as 別名]
def _target_class_loss(
            self,
            target_class,
            box_scores,
            box_class_probs_logits):
        """ Evaluate target_class_loss w.r.t. the input.

        """
        box_scores = K.squeeze(box_scores, axis=0)
        box_class_probs_logits = K.squeeze(box_class_probs_logits, axis=0)
        import tensorflow as tf
        boi_idx = tf.where(box_scores[:, target_class] > self._score)
        loss_box_class_conf = tf.reduce_mean(
            tf.gather(box_class_probs_logits[:, target_class], boi_idx))

        # Avoid the propagation of nan
        return tf.cond(
            tf.is_nan(loss_box_class_conf),
            lambda: tf.constant(0.),
            lambda: loss_box_class_conf) 
開發者ID:advboxes,項目名稱:perceptron-benchmark,代碼行數:22,代碼來源:keras_yolov3.py

示例6: testSqrt

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_nan [as 別名]
def testSqrt(self):
    for dtype in [np.float16, np.float32, np.float64]:
      fi = np.finfo(dtype)
      for size in [1, 3, 4, 7, 8, 63, 64, 65]:
        # For float32 Eigen uses Carmack's fast vectorized sqrt algorithm.
        # It is not accurate for very large arguments, so we test for
        # fi.max/100 instead of fi.max here.
        for value in [fi.min, -2, -1, 0, fi.tiny, 1, 2, 1000, fi.max/100]:
          x = np.full((size,), value, dtype=dtype)
          np_y = np.sqrt(x)
          np_nan = np.isnan(np_y)
          with self.test_session(use_gpu=True):
            tf_y = tf.sqrt(x)
            tf_nan = tf.is_nan(tf_y)
            if value < 0:
              self.assertAllEqual(np_nan, tf_nan.eval())
            else:
              self.assertAllCloseAccordingToType(np_y, tf_y.eval()) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:20,代碼來源:cwise_ops_test.py

示例7: testUniformNans

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_nan [as 別名]
def testUniformNans(self):
    with self.test_session():
      a = 10.0
      b = [11.0, 100.0]
      uniform = tf.contrib.distributions.Uniform(a=a, b=b)

      no_nans = tf.constant(1.0)
      nans = tf.constant(0.0) / tf.constant(0.0)
      self.assertTrue(tf.is_nan(nans).eval())
      with_nans = tf.stack([no_nans, nans])

      pdf = uniform.pdf(with_nans)

      is_nan = tf.is_nan(pdf).eval()
      self.assertFalse(is_nan[0])
      self.assertTrue(is_nan[1]) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:18,代碼來源:uniform_test.py

示例8: masked_mse_tf

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_nan [as 別名]
def masked_mse_tf(preds, labels, null_val=np.nan):
    """
    Accuracy with masking.
    :param preds:
    :param labels:
    :param null_val:
    :return:
    """
    if np.isnan(null_val):
        mask = ~tf.is_nan(labels)
    else:
        mask = tf.not_equal(labels, null_val)
    mask = tf.cast(mask, tf.float32)
    mask /= tf.reduce_mean(mask)
    mask = tf.where(tf.is_nan(mask), tf.zeros_like(mask), mask)
    loss = tf.square(tf.subtract(preds, labels))
    loss = loss * mask
    loss = tf.where(tf.is_nan(loss), tf.zeros_like(loss), loss)
    return tf.reduce_mean(loss) 
開發者ID:liyaguang,項目名稱:DCRNN,代碼行數:21,代碼來源:metrics.py

示例9: masked_mae_tf

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_nan [as 別名]
def masked_mae_tf(preds, labels, null_val=np.nan):
    """
    Accuracy with masking.
    :param preds:
    :param labels:
    :param null_val:
    :return:
    """
    if np.isnan(null_val):
        mask = ~tf.is_nan(labels)
    else:
        mask = tf.not_equal(labels, null_val)
    mask = tf.cast(mask, tf.float32)
    mask /= tf.reduce_mean(mask)
    mask = tf.where(tf.is_nan(mask), tf.zeros_like(mask), mask)
    loss = tf.abs(tf.subtract(preds, labels))
    loss = loss * mask
    loss = tf.where(tf.is_nan(loss), tf.zeros_like(loss), loss)
    return tf.reduce_mean(loss) 
開發者ID:liyaguang,項目名稱:DCRNN,代碼行數:21,代碼來源:metrics.py

示例10: solve

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_nan [as 別名]
def solve(H, b, max_update=1.0):
    """ Solves the linear system Hx = b, H > 0"""

    # small system, solve on cpu
    with tf.device('/cpu:0'):
        H = tf.cast(H, tf.float64)
        b = tf.cast(b, tf.float64)

        b = tf.expand_dims(b, -1)
        x = cholesky_solve(H, b)

        # replaces nans and clip large updates
        bad_values = tf.is_nan(x)
        x = tf.where(bad_values, tf.zeros_like(x), x)
        x = tf.clip_by_value(x, -max_update, max_update)

        x = tf.squeeze(x, -1)
        x = tf.cast(x, tf.float32)
        
    return x


# def solve(H, b):
#     return tf.squeeze(tf.linalg.solve(H, tf.expand_dims(b, -1)), -1) 
開發者ID:princeton-vl,項目名稱:DeepV2D,代碼行數:26,代碼來源:cholesky.py

示例11: filter_groundtruth_with_nan_box_coordinates

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_nan [as 別名]
def filter_groundtruth_with_nan_box_coordinates(tensor_dict):
  """Filters out groundtruth with no bounding boxes.

  Args:
    tensor_dict: a dictionary of following groundtruth tensors -
      fields.InputDataFields.groundtruth_boxes
      fields.InputDataFields.groundtruth_classes
      fields.InputDataFields.groundtruth_confidences
      fields.InputDataFields.groundtruth_keypoints
      fields.InputDataFields.groundtruth_instance_masks
      fields.InputDataFields.groundtruth_is_crowd
      fields.InputDataFields.groundtruth_area
      fields.InputDataFields.groundtruth_label_types

  Returns:
    a dictionary of tensors containing only the groundtruth that have bounding
    boxes.
  """
  groundtruth_boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]
  nan_indicator_vector = tf.greater(tf.reduce_sum(tf.cast(
      tf.is_nan(groundtruth_boxes), dtype=tf.int32), reduction_indices=[1]), 0)
  valid_indicator_vector = tf.logical_not(nan_indicator_vector)
  valid_indices = tf.where(valid_indicator_vector)

  return retain_groundtruth(tensor_dict, valid_indices) 
開發者ID:ShivangShekhar,項目名稱:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代碼行數:27,代碼來源:ops.py


注:本文中的tensorflow.is_nan方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。