本文整理匯總了Python中tensorflow.is_inf方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.is_inf方法的具體用法?Python tensorflow.is_inf怎麽用?Python tensorflow.is_inf使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.is_inf方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: Exponential
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_inf [as 別名]
def Exponential(lambda_, name=None):
X = tf.placeholder(config.dtype, name=name)
Distribution.logp = tf.log(lambda_) - lambda_*X
def integral(lower, upper):
upper_integrand = tf.cond(
tf.is_inf(tf.cast(upper, config.dtype)),
lambda: tf.constant(1, dtype=config.dtype),
lambda: tf.exp(-lambda_*upper)
)
lower_integrand = tf.cond(
tf.is_inf(tf.cast(lower, config.dtype)),
lambda: tf.constant(0, dtype=config.dtype),
lambda: tf.exp(-lambda_*lower)
)
return lower_integrand - upper_integrand
Distribution.integral = integral
return X
示例2: Uniform
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_inf [as 別名]
def Uniform(name=None):
X = tf.placeholder(config.dtype, name=name)
Distribution.logp = tf.fill(tf.shape(X), config.dtype(0))
def integral(lower, upper):
return tf.cond(
tf.logical_or(
tf.is_inf(tf.cast(lower, config.dtype)),
tf.is_inf(tf.cast(upper, config.dtype))
),
lambda: tf.constant(1, dtype=config.dtype),
lambda: tf.cast(upper, config.dtype) - tf.cast(lower, config.dtype),
)
Distribution.integral = integral
return X
示例3: UniformInt
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_inf [as 別名]
def UniformInt(name=None):
X = tf.placeholder(config.int_dtype, name=name)
Distribution.logp = tf.fill(tf.shape(X), config.dtype(0))
def integral(lower, upper):
val = tf.cond(
tf.logical_or(
tf.is_inf(tf.ceil(tf.cast(lower, config.dtype))),
tf.is_inf(tf.floor(tf.cast(upper, config.dtype)))
),
lambda: tf.constant(1, dtype=config.dtype),
lambda: tf.cast(upper, config.dtype) - tf.cast(lower, config.dtype),
)
return val
Distribution.integral = integral
return X
示例4: get_cubic_root
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_inf [as 別名]
def get_cubic_root(self):
# We have the equation x^2 D^2 + (1-x)^4 * C / h_min^2
# where x = sqrt(mu).
# We substitute x, which is sqrt(mu), with x = y + 1.
# It gives y^3 + py = q
# where p = (D^2 h_min^2)/(2*C) and q = -p.
# We use the Vieta's substution to compute the root.
# There is only one real solution y (which is in [0, 1] ).
# http://mathworld.wolfram.com/VietasSubstitution.html
# assert_array = \
# [tf.Assert(tf.logical_not(tf.is_nan(self._dist_to_opt_avg) ), [self._dist_to_opt_avg,]),
# tf.Assert(tf.logical_not(tf.is_nan(self._h_min) ), [self._h_min,]),
# tf.Assert(tf.logical_not(tf.is_nan(self._grad_var) ), [self._grad_var,]),
# tf.Assert(tf.logical_not(tf.is_inf(self._dist_to_opt_avg) ), [self._dist_to_opt_avg,]),
# tf.Assert(tf.logical_not(tf.is_inf(self._h_min) ), [self._h_min,]),
# tf.Assert(tf.logical_not(tf.is_inf(self._grad_var) ), [self._grad_var,])]
# with tf.control_dependencies(assert_array):
# EPS in the numerator to prevent momentum being exactly one in case of 0 gradient
p = (self._dist_to_opt_avg + EPS)**2 * (self._h_min + EPS)**2 / 2 / (self._grad_var + EPS)
w3 = (-tf.sqrt(p**2 + 4.0 / 27.0 * p**3) - p) / 2.0
w = tf.sign(w3) * tf.pow(tf.abs(w3), 1.0/3.0)
y = w - p / 3.0 / (w + EPS)
x = y + 1
return x
示例5: Normal
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_inf [as 別名]
def Normal(mu, sigma, name=None):
# TODO(chrisburr) Just use NormalN?
X = tf.placeholder(config.dtype, name=name)
Distribution.logp = _normal_logp(X, mu, sigma)
def integral(lower, upper):
upper_integrand = tf.cond(
tf.is_inf(tf.cast(upper, config.dtype)),
lambda: tf.constant(1, dtype=config.dtype),
lambda: _normal_cdf(upper, mu, sigma)
)
lower_integrand = tf.cond(
tf.is_inf(tf.cast(lower, config.dtype)),
lambda: tf.constant(0, dtype=config.dtype),
lambda: _normal_cdf(lower, mu, sigma)
)
return upper_integrand - lower_integrand
Distribution.integral = integral
return X
# @Distribution
# def NormalN(mus, sigmas, name=None):
# X = tf.placeholder(config.dtype, name=name)
# logps = [_normal_logp(X, mu, sigma) for mu, sigma in zip(mus, sigmas)]
# def cdf(lim):
# raise NotImplementedError
# Distribution.logp = sum(logps)
# Distribution.integral = lambda lower, upper: cdf(upper) - cdf(lower)
# return X
示例6: _compare
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_inf [as 別名]
def _compare(self, x, use_gpu):
np_finite, np_inf, np_nan = np.isfinite(x), np.isinf(x), np.isnan(x)
with self.test_session(use_gpu=use_gpu) as sess:
inx = tf.convert_to_tensor(x)
ofinite, oinf, onan = tf.is_finite(inx), tf.is_inf(
inx), tf.is_nan(inx)
tf_finite, tf_inf, tf_nan = sess.run([ofinite, oinf, onan])
self.assertAllEqual(np_inf, tf_inf)
self.assertAllEqual(np_nan, tf_nan)
self.assertAllEqual(np_finite, tf_finite)
self.assertShapeEqual(np_inf, oinf)
self.assertShapeEqual(np_nan, onan)
self.assertShapeEqual(np_finite, ofinite)
示例7: tf_safe_log
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_inf [as 別名]
def tf_safe_log(value, replacement_value=-100.0):
log_value = tf.log(value + 1e-9)
replace = tf.logical_or(tf.is_nan(log_value), tf.is_inf(log_value))
log_value = tf.where(replace, replacement_value * tf.ones_like(log_value), log_value)
return log_value
示例8: update_op
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_inf [as 別名]
def update_op(self, has_nan, amax):
def overflow_case():
new_scale_val = tf.clip_by_value(self.scale / self.step_factor,
self.scale_min, self.scale_max)
scale_assign = tf.assign(self.scale, new_scale_val)
overflow_iter_assign = tf.assign(self.last_overflow_iteration,
self.iteration)
with tf.control_dependencies([scale_assign, overflow_iter_assign]):
return tf.identity(self.scale)
def scale_case():
since_overflow = self.iteration - self.last_overflow_iteration
should_update = tf.equal(since_overflow % self.step_window, 0)
def scale_update_fn():
new_scale_val = tf.clip_by_value(self.scale * self.step_factor,
self.scale_min, self.scale_max)
return tf.assign(self.scale, new_scale_val)
return tf.cond(should_update,
scale_update_fn,
lambda: self.scale)
iter_update = tf.assign_add(self.iteration, 1)
overflow = tf.logical_or(has_nan, tf.is_inf(amax))
update_op = tf.cond(overflow,
overflow_case,
scale_case)
with tf.control_dependencies([update_op]):
return tf.identity(iter_update)
示例9: gradient_summaries
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_inf [as 別名]
def gradient_summaries(gvs, suppress_inf_and_nans=False):
"""Creates summaries for norm, mean and var of gradients."""
gs = [gv[0] for gv in gvs]
grad_global_norm = tf.global_norm(gs, 'gradient_global_norm')
if suppress_inf_and_nans:
is_nan_or_inf = tf.logical_or(tf.is_nan(grad_global_norm),
tf.is_inf(grad_global_norm))
grad_global_norm = tf.where(is_nan_or_inf,
tf.zeros_like(grad_global_norm) - 1.,
grad_global_norm)
grad_abs_max, grad_abs_mean, grad_mean, grad_var = [0.] * 4
n_grads = 1e-8
for g, _ in gvs:
if isinstance(g, tf.IndexedSlices):
g = g.values
if g is not None:
current_n_grads = np.prod(g.shape.as_list())
abs_g = abs(g)
mean, var = tf.nn.moments(g, list(range(len(g.shape))))
grad_abs_max = tf.maximum(grad_abs_max, tf.reduce_max(abs_g))
grad_abs_mean += tf.reduce_sum(abs_g)
grad_mean += mean * current_n_grads
grad_var += var
n_grads += current_n_grads
tf.summary.scalar('grad/abs_max', grad_abs_max)
tf.summary.scalar('grad/abs_mean', grad_abs_mean / n_grads)
tf.summary.scalar('grad/mean', grad_mean / n_grads)
tf.summary.scalar('grad/var', grad_var / n_grads)
return dict(grad_global_norm=grad_global_norm)
示例10: test_forward_isinf
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_inf [as 別名]
def test_forward_isinf():
_verify_infiniteness_ops(tf.is_inf, "isinf")