當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.is_finite方法代碼示例

本文整理匯總了Python中tensorflow.is_finite方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.is_finite方法的具體用法?Python tensorflow.is_finite怎麽用?Python tensorflow.is_finite使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.is_finite方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: updateK

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_finite [as 別名]
def updateK(self, k, prepVars, U):
        f = self.__f
        UfShape = U[f].get_shape()

        lhUfk = self.__likelihood.lhUfk(U[f], prepVars, f, k)
        postfk = lhUfk*self.prior[k].cond()
        Ufk = postfk.draw()
        Ufk = tf.expand_dims(Ufk, 0)

        normUfk = tf.norm(Ufk)
        notNanNorm = tf.logical_not(tf.is_nan(normUfk))
        finiteNorm = tf.is_finite(normUfk)
        positiveNorm = normUfk > 0.
        isValid = tf.logical_and(notNanNorm,
                                 tf.logical_and(finiteNorm,
                                                positiveNorm))
        Uf = tf.cond(isValid, lambda: self.updateUf(U[f], Ufk, k),
                     lambda: U[f])

        # TODO: if valid -> self.__likelihood.lhU()[f].updateUfk(U[f][k], k)
        Uf.set_shape(UfShape)
        U[f] = Uf
        return(U) 
開發者ID:bethgelab,項目名稱:decompose,代碼行數:25,代碼來源:postU.py

示例2: get_acceptance_rate

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_finite [as 別名]
def get_acceptance_rate(q, p, new_q, new_p, log_posterior, mass, data_axes):
    old_hamiltonian, old_log_prob = hamiltonian(
        q, p, log_posterior, mass, data_axes)
    new_hamiltonian, new_log_prob = hamiltonian(
        new_q, new_p, log_posterior, mass, data_axes)
    old_log_prob = tf.check_numerics(
        old_log_prob,
        'HMC: old_log_prob has numeric errors! Try better initialization.')
    acceptance_rate = tf.exp(
        tf.minimum(-new_hamiltonian + old_hamiltonian, 0.0))
    is_finite = tf.logical_and(tf.is_finite(acceptance_rate),
                               tf.is_finite(new_log_prob))
    acceptance_rate = tf.where(is_finite, acceptance_rate,
                               tf.zeros_like(acceptance_rate))
    return old_hamiltonian, new_hamiltonian, old_log_prob, new_log_prob, \
        acceptance_rate 
開發者ID:thu-ml,項目名稱:zhusuan,代碼行數:18,代碼來源:hmc.py

示例3: mean_acc

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_finite [as 別名]
def mean_acc(y_true, y_pred):
	s = K.shape(y_true)

	# reshape such that w and h dim are multiplied together
	y_true_reshaped = K.reshape( y_true, tf.stack( [-1, s[1]*s[2], s[-1]] ) )
	y_pred_reshaped = K.reshape( y_pred, tf.stack( [-1, s[1]*s[2], s[-1]] ) )

	# correctly classified
	clf_pred = K.one_hot( K.argmax(y_pred_reshaped), nb_classes = s[-1])
	equal_entries = K.cast(K.equal(clf_pred,y_true_reshaped), dtype='float32') * y_true_reshaped

	correct_pixels_per_class = K.sum(equal_entries, axis=1)
	n_pixels_per_class = K.sum(y_true_reshaped,axis=1)

	acc = correct_pixels_per_class / n_pixels_per_class
	acc_mask = tf.is_finite(acc)
	acc_masked = tf.boolean_mask(acc,acc_mask)

	return K.mean(acc_masked) 
開發者ID:theduynguyen,項目名稱:Keras-FCN,代碼行數:21,代碼來源:loss_func.py

示例4: mean_IoU

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_finite [as 別名]
def mean_IoU(y_true, y_pred):
	s = K.shape(y_true)

	# reshape such that w and h dim are multiplied together
	y_true_reshaped = K.reshape( y_true, tf.stack( [-1, s[1]*s[2], s[-1]] ) )
	y_pred_reshaped = K.reshape( y_pred, tf.stack( [-1, s[1]*s[2], s[-1]] ) )

	# correctly classified
	clf_pred = K.one_hot( K.argmax(y_pred_reshaped), nb_classes = s[-1])
	equal_entries = K.cast(K.equal(clf_pred,y_true_reshaped), dtype='float32') * y_true_reshaped

	intersection = K.sum(equal_entries, axis=1)
	union_per_class = K.sum(y_true_reshaped,axis=1) + K.sum(y_pred_reshaped,axis=1)

	iou = intersection / (union_per_class - intersection)
	iou_mask = tf.is_finite(iou)
	iou_masked = tf.boolean_mask(iou,iou_mask)

	return K.mean( iou_masked ) 
開發者ID:theduynguyen,項目名稱:Keras-FCN,代碼行數:21,代碼來源:loss_func.py

示例5: _loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_finite [as 別名]
def _loss(self, predictions):
        with tf.name_scope("loss"):
            # if training then crop center of y, else, padding was applied
            slice_amt = (np.sum(self.filter_sizes) - len(self.filter_sizes)) / 2
            slice_y = self.y_norm[:,slice_amt:-slice_amt, slice_amt:-slice_amt]
            _y = tf.cond(self.is_training, lambda: slice_y, lambda: self.y_norm)
            tf.subtract(predictions, _y)
            err = tf.square(predictions - _y)
            err_filled = utils.fill_na(err, 0)
            finite_count = tf.reduce_sum(tf.cast(tf.is_finite(err), tf.float32))
            mse = tf.reduce_sum(err_filled) / finite_count
            return mse 
開發者ID:tjvandal,項目名稱:srcnn-tensorflow,代碼行數:14,代碼來源:srcnn.py

示例6: fill_na

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_finite [as 別名]
def fill_na(x, fillval=0):
    fill = tf.ones_like(x) * fillval
    return tf.where(tf.is_finite(x), x, fill) 
開發者ID:tjvandal,項目名稱:srcnn-tensorflow,代碼行數:5,代碼來源:utils.py

示例7: nanmean

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_finite [as 別名]
def nanmean(x, axis=None):
    x_filled = fill_na(x, 0)
    x_sum = tf.reduce_sum(x_filled, axis=axis)
    x_count = tf.reduce_sum(tf.cast(tf.is_finite(x), tf.float32), axis=axis)
    return tf.div(x_sum, x_count) 
開發者ID:tjvandal,項目名稱:srcnn-tensorflow,代碼行數:7,代碼來源:utils.py

示例8: nanvar

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_finite [as 別名]
def nanvar(x, axis=None):
    x_filled = fill_na(x, 0)
    x_count = tf.reduce_sum(tf.cast(tf.is_finite(x), tf.float32), axis=axis)
    x_mean = nanmean(x, axis=axis)
    x_ss = tf.reduce_sum((x_filled - x_mean)**2, axis=axis)
    return x_ss / x_count 
開發者ID:tjvandal,項目名稱:srcnn-tensorflow,代碼行數:8,代碼來源:utils.py

示例9: _mapper

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_finite [as 別名]
def _mapper(self, grad, var):
        # this is very slow...
        #op = tf.Assert(tf.reduce_all(tf.is_finite(var)), [var], summarize=100)
        grad = tf.check_numerics(grad, 'CheckGradient')
        return grad 
開發者ID:anonymous-author1,項目名稱:DDRL,代碼行數:7,代碼來源:gradproc.py

示例10: aggregate_single_gradient_using_copy

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_finite [as 別名]
def aggregate_single_gradient_using_copy(grad_and_vars, use_mean,
                                         check_inf_nan):
  """Calculate the average gradient for a shared variable across all towers.

  Note that this function provides a synchronization point across all towers.

  Args:
    grad_and_vars: A list or tuple of (gradient, variable) tuples. Each
      (gradient, variable) pair within the outer list represents the gradient
      of the variable calculated for a single tower, and the number of pairs
      equals the number of towers.
    use_mean: if True, mean is taken, else sum of gradients is taken.
    check_inf_nan: check grads for nans and infs.

  Returns:
    The tuple ([(average_gradient, variable),], has_nan_or_inf) where the
      gradient has been averaged across all towers. The variable is chosen from
      the first tower. The has_nan_or_inf indicates the grads has nan or inf.
  """
  grads = [g for g, _ in grad_and_vars]
  if any(isinstance(g, tf.IndexedSlices) for g in grads):
    # TODO(reedwm): All-reduce IndexedSlices more effectively.
    grad = gradients_impl._AggregateIndexedSlicesGradients(grads)  # pylint: disable=protected-access
  else:
    grad = tf.add_n(grads)

  if use_mean and len(grads) > 1:
    grad = tf.scalar_mul(1.0 / len(grads), grad)

  v = grad_and_vars[0][1]
  if check_inf_nan:
    with tf.name_scope('check_for_inf_and_nan'):
      has_nan_or_inf = tf.logical_not(tf.reduce_all(tf.is_finite(grads)))
    return (grad, v), has_nan_or_inf
  else:
    return (grad, v), None 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:38,代碼來源:variable_mgr_util.py

示例11: custom_svd_v_column

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_finite [as 別名]
def custom_svd_v_column(M, col_index=-1):
    # Must make sure M is finite. Otherwise cudaSolver might fail.
    assert_op = tf.Assert(tf.logical_not(tf.reduce_any(tf.logical_not(tf.is_finite(M)))), [M], summarize=10)
    with tf.control_dependencies([assert_op]):
        with tf.get_default_graph().gradient_override_map({'Svd': 'CustomSvd'}):
            s, u, v = tf.svd(M, name='Svd') # M = usv^T
            return v[:, :, col_index] 
開發者ID:lingxiaoli94,項目名稱:SPFN,代碼行數:9,代碼來源:differentiable_tls.py

示例12: _compare

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_finite [as 別名]
def _compare(self, x, use_gpu):
    np_finite, np_inf, np_nan = np.isfinite(x), np.isinf(x), np.isnan(x)
    with self.test_session(use_gpu=use_gpu) as sess:
      inx = tf.convert_to_tensor(x)
      ofinite, oinf, onan = tf.is_finite(inx), tf.is_inf(
          inx), tf.is_nan(inx)
      tf_finite, tf_inf, tf_nan = sess.run([ofinite, oinf, onan])
    self.assertAllEqual(np_inf, tf_inf)
    self.assertAllEqual(np_nan, tf_nan)
    self.assertAllEqual(np_finite, tf_finite)
    self.assertShapeEqual(np_inf, oinf)
    self.assertShapeEqual(np_nan, onan)
    self.assertShapeEqual(np_finite, ofinite) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:15,代碼來源:cwise_ops_test.py

示例13: _mapper

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_finite [as 別名]
def _mapper(self, grad, var):
        # this was very slow.... see #3649
        # op = tf.Assert(tf.reduce_all(tf.is_finite(var)), [var], summarize=100)
        grad = tf.check_numerics(grad, 'CheckGradient/' + var.op.name)
        return grad 
開發者ID:microsoft,項目名稱:petridishnn,代碼行數:7,代碼來源:gradproc.py

示例14: mask_nans

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_finite [as 別名]
def mask_nans(x):
  x_zeros = tf.zeros_like(x)
  x_mask = tf.is_finite(x)
  y = tf.where(x_mask, x, x_zeros)
  return y 
開發者ID:NVIDIA,項目名稱:OpenSeq2Seq,代碼行數:7,代碼來源:utils.py

示例15: aggregate_single_gradient_using_copy

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import is_finite [as 別名]
def aggregate_single_gradient_using_copy(grad_and_vars, use_mean,
                                         check_inf_nan):
  """Calculate the average gradient for a shared variable across all towers.

  Note that this function provides a synchronization point across all towers.

  Args:
    grad_and_vars: A list or tuple of (gradient, variable) tuples. Each
      (gradient, variable) pair within the outer list represents the gradient
      of the variable calculated for a single tower, and the number of pairs
      equals the number of towers.
    use_mean: if True, mean is taken, else sum of gradients is taken.
    check_inf_nan: check grads for nans and infs.

  Returns:
    The tuple ([(average_gradient, variable),], has_nan_or_inf) where the
      gradient has been averaged across all towers. The variable is chosen from
      the first tower. The has_nan_or_inf indicates the grads has nan or inf.
  """
  grads = [g for g, _ in grad_and_vars]
  grad = tf.add_n(grads)

  if use_mean and len(grads) > 1:
    grad = tf.multiply(grad, 1.0 / len(grads))

  v = grad_and_vars[0][1]
  if check_inf_nan:
    has_nan_or_inf = tf.logical_not(tf.reduce_all(tf.is_finite(grads)))
    return (grad, v), has_nan_or_inf
  else:
    return (grad, v), None 
開發者ID:HewlettPackard,項目名稱:dlcookbook-dlbs,代碼行數:33,代碼來源:variable_mgr_util.py


注:本文中的tensorflow.is_finite方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。