本文整理匯總了Python中tensorflow.inv方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.inv方法的具體用法?Python tensorflow.inv怎麽用?Python tensorflow.inv使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.inv方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: ycbcr2rgb
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import inv [as 別名]
def ycbcr2rgb(inputs):
with tf.name_scope('ycbcr2rgb'):
if inputs.get_shape()[-1].value == 1:
return inputs
assert inputs.get_shape()[-1].value == 3, 'Error: rgb2ycbcr input should be RGB or grayscale!'
ndims = len(inputs.get_shape())
# origT = np.array([[65.481, 128.553, 24.966], [-37.797 -74.203 112], [112 -93.786 -18.214]])
# T = tf.inv(origT)
Tinv = [[0.00456621, 0., 0.00625893], [0.00456621, -0.00153632, -0.00318811], [0.00456621, 0.00791071, 0.]]
origOffset = [16.0, 128.0, 128.0]
if ndims == 4:
origT = [tf.reshape(Tinv[i], [1, 1, 1, 3]) * 255.0 for i in xrange(3)]
origOffset = tf.reshape(origOffset, [1, 1, 1, 3]) / 255.0
elif ndims == 5:
origT = [tf.reshape(Tinv[i], [1, 1, 1, 1, 3]) * 255.0 for i in xrange(3)]
origOffset = tf.reshape(origOffset, [1, 1, 1, 1, 3]) / 255.0
output = []
for i in xrange(3):
output.append(tf.reduce_sum((inputs - origOffset) * origT[i], reduction_indices=-1, keep_dims=True))
return tf.concat(output, -1)
示例2: ycbcr2rgb
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import inv [as 別名]
def ycbcr2rgb(inputs):
with tf.name_scope('ycbcr2rgb'):
if inputs.get_shape()[-1].value == 1:
return inputs
assert inputs.get_shape()[-1].value == 3, 'Error: rgb2ycbcr input should be RGB or grayscale!'
ndims = len(inputs.get_shape())
# origT = np.array([[65.481, 128.553, 24.966], [-37.797 -74.203 112], [112 -93.786 -18.214]])
# T = tf.inv(origT)
Tinv = [[0.00456621, 0., 0.00625893], [0.00456621, -0.00153632, -0.00318811], [0.00456621, 0.00791071, 0.]]
origOffset = [16.0, 128.0, 128.0]
if ndims == 4:
origT = [tf.reshape(Tinv[i], [1, 1, 1, 3]) * 255.0 for i in range(3)]
origOffset = tf.reshape(origOffset, [1, 1, 1, 3]) / 255.0
elif ndims == 5:
origT = [tf.reshape(Tinv[i], [1, 1, 1, 1, 3]) * 255.0 for i in range(3)]
origOffset = tf.reshape(origOffset, [1, 1, 1, 1, 3]) / 255.0
output = []
for i in range(3):
output.append(tf.reduce_sum((inputs - origOffset) * origT[i], reduction_indices=-1, keep_dims=True))
return tf.concat(output, -1)
示例3: test_Inv
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import inv [as 別名]
def test_Inv(self):
if td._tf_version[:2] <= (0, 11):
t = tf.inv(self.random(4, 3))
self.check(t)
示例4: testFloatBasic
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import inv [as 別名]
def testFloatBasic(self):
x = np.arange(-3, 3).reshape(1, 3, 2).astype(np.float32)
y = (x + .5).astype(np.float32) # no zero
z = (x + 15.5).astype(np.float32) # all positive
k = np.arange(-0.90, 0.90, 0.25).astype(np.float32) # between -1 and 1
self._compareBoth(x, np.abs, tf.abs)
self._compareBoth(x, np.abs, _ABS)
self._compareBoth(x, np.negative, tf.neg)
self._compareBoth(x, np.negative, _NEG)
self._compareBoth(y, self._inv, tf.inv)
self._compareBoth(x, np.square, tf.square)
self._compareBoth(z, np.sqrt, tf.sqrt)
self._compareBoth(z, self._rsqrt, tf.rsqrt)
self._compareBoth(x, np.exp, tf.exp)
self._compareBoth(z, np.log, tf.log)
self._compareBoth(z, np.log1p, tf.log1p)
self._compareBoth(x, np.tanh, tf.tanh)
self._compareBoth(x, self._sigmoid, tf.sigmoid)
self._compareBoth(y, np.sign, tf.sign)
self._compareBoth(x, np.sin, tf.sin)
self._compareBoth(x, np.cos, tf.cos)
self._compareBoth(k, np.arcsin, tf.asin)
self._compareBoth(k, np.arccos, tf.acos)
self._compareBoth(x, np.arctan, tf.atan)
self._compareBoth(x, np.tan, tf.tan)
self._compareBoth(
y,
np.vectorize(self._replace_domain_error_with_inf(math.lgamma)),
tf.lgamma)
self._compareBoth(x, np.vectorize(math.erf), tf.erf)
self._compareBoth(x, np.vectorize(math.erfc), tf.erfc)
self._compareBothSparse(x, np.abs, tf.abs)
self._compareBothSparse(x, np.negative, tf.neg)
self._compareBothSparse(x, np.square, tf.square)
self._compareBothSparse(z, np.sqrt, tf.sqrt, tol=1e-3)
self._compareBothSparse(x, np.tanh, tf.tanh)
self._compareBothSparse(y, np.sign, tf.sign)
self._compareBothSparse(x, np.vectorize(math.erf), tf.erf)
示例5: testFloatEmpty
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import inv [as 別名]
def testFloatEmpty(self):
x = np.empty((2, 0, 5), dtype=np.float32)
self._compareBoth(x, np.abs, tf.abs)
self._compareBoth(x, np.abs, _ABS)
self._compareBoth(x, np.negative, tf.neg)
self._compareBoth(x, np.negative, _NEG)
self._compareBoth(x, self._inv, tf.inv)
self._compareBoth(x, np.square, tf.square)
self._compareBoth(x, np.sqrt, tf.sqrt)
self._compareBoth(x, self._rsqrt, tf.rsqrt)
self._compareBoth(x, np.exp, tf.exp)
self._compareBoth(x, np.log, tf.log)
self._compareBoth(x, np.log1p, tf.log1p)
self._compareBoth(x, np.tanh, tf.tanh)
self._compareBoth(x, self._sigmoid, tf.sigmoid)
self._compareBoth(x, np.sign, tf.sign)
self._compareBoth(x, np.sin, tf.sin)
self._compareBoth(x, np.cos, tf.cos)
# Can't use vectorize below, so just use some arbitrary function
self._compareBoth(x, np.sign, tf.lgamma)
self._compareBoth(x, np.sign, tf.erf)
self._compareBoth(x, np.sign, tf.erfc)
self._compareBoth(x, np.tan, tf.tan)
self._compareBoth(x, np.arcsin, tf.asin)
self._compareBoth(x, np.arccos, tf.acos)
self._compareBoth(x, np.arctan, tf.atan)
self._compareBothSparse(x, np.abs, tf.abs)
self._compareBothSparse(x, np.negative, tf.neg)
self._compareBothSparse(x, np.square, tf.square)
self._compareBothSparse(x, np.sqrt, tf.sqrt, tol=1e-3)
self._compareBothSparse(x, np.tanh, tf.tanh)
self._compareBothSparse(x, np.sign, tf.sign)
self._compareBothSparse(x, np.sign, tf.erf)
示例6: testDoubleBasic
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import inv [as 別名]
def testDoubleBasic(self):
x = np.arange(-3, 3).reshape(1, 3, 2).astype(np.float64)
y = (x + .5).astype(np.float64) # no zero
z = (x + 15.5).astype(np.float64) # all positive
k = np.arange(-0.90, 0.90, 0.35).reshape(1, 3, 2).astype(np.float64) # between -1 and 1
self._compareBoth(x, np.abs, tf.abs)
self._compareBoth(x, np.abs, _ABS)
self._compareBoth(x, np.negative, tf.neg)
self._compareBoth(x, np.negative, _NEG)
self._compareBoth(y, self._inv, tf.inv)
self._compareBoth(x, np.square, tf.square)
self._compareBoth(z, np.sqrt, tf.sqrt)
self._compareBoth(z, self._rsqrt, tf.rsqrt)
self._compareBoth(x, np.exp, tf.exp)
self._compareBoth(z, np.log, tf.log)
self._compareBoth(z, np.log1p, tf.log1p)
self._compareBoth(x, np.tanh, tf.tanh)
self._compareBoth(x, self._sigmoid, tf.sigmoid)
self._compareBoth(y, np.sign, tf.sign)
self._compareBoth(x, np.sin, tf.sin)
self._compareBoth(x, np.cos, tf.cos)
self._compareBoth(
y,
np.vectorize(self._replace_domain_error_with_inf(math.lgamma)),
tf.lgamma)
self._compareBoth(x, np.vectorize(math.erf), tf.erf)
self._compareBoth(x, np.vectorize(math.erfc), tf.erfc)
self._compareBoth(x, np.arctan, tf.atan)
self._compareBoth(k, np.arcsin, tf.asin)
self._compareBoth(k, np.arccos, tf.acos)
self._compareBoth(k, np.tan, tf.tan)
self._compareBothSparse(x, np.abs, tf.abs)
self._compareBothSparse(x, np.negative, tf.neg)
self._compareBothSparse(x, np.square, tf.square)
self._compareBothSparse(z, np.sqrt, tf.sqrt, tol=1e-3)
self._compareBothSparse(x, np.tanh, tf.tanh)
self._compareBothSparse(y, np.sign, tf.sign)
self._compareBothSparse(x, np.vectorize(math.erf), tf.erf)
示例7: testHalfBasic
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import inv [as 別名]
def testHalfBasic(self):
x = np.arange(-3, 3).reshape(1, 3, 2).astype(np.float16)
y = (x + .5).astype(np.float16) # no zero
z = (x + 15.5).astype(np.float16) # all positive
self._compareBoth(x, np.abs, tf.abs)
self._compareBoth(x, np.abs, _ABS)
self._compareBoth(x, np.negative, tf.neg)
self._compareBoth(x, np.negative, _NEG)
self._compareBoth(y, self._inv, tf.inv)
self._compareBoth(x, np.square, tf.square)
self._compareBoth(z, np.sqrt, tf.sqrt)
self._compareBoth(z, self._rsqrt, tf.rsqrt)
self._compareBoth(x, np.exp, tf.exp)
self._compareBoth(z, np.log, tf.log)
self._compareBoth(z, np.log1p, tf.log1p)
self._compareBoth(x, np.tanh, tf.tanh)
self._compareBoth(x, self._sigmoid, tf.sigmoid)
self._compareBoth(y, np.sign, tf.sign)
self._compareBoth(x, np.sin, tf.sin)
self._compareBoth(x, np.cos, tf.cos)
self._compareBoth(
y,
np.vectorize(self._replace_domain_error_with_inf(math.lgamma)),
tf.lgamma)
self._compareBoth(x, np.vectorize(math.erf), tf.erf)
self._compareBoth(x, np.vectorize(math.erfc), tf.erfc)
self._compareBothSparse(x, np.abs, tf.abs)
self._compareBothSparse(x, np.negative, tf.neg)
self._compareBothSparse(x, np.square, tf.square)
self._compareBothSparse(z, np.sqrt, tf.sqrt, tol=1e-3)
self._compareBothSparse(x, np.tanh, tf.tanh)
self._compareBothSparse(y, np.sign, tf.sign)
self._compareBothSparse(x, np.vectorize(math.erf), tf.erf, tol=1e-3)
示例8: testComplex64Basic
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import inv [as 別名]
def testComplex64Basic(self):
x = np.complex(1, 1) * np.arange(-3, 3).reshape(1, 3, 2).astype(
np.complex64)
y = x + 0.5 # no zeros
self._compareCpu(x, np.abs, tf.complex_abs)
self._compareCpu(x, np.abs, _ABS)
self._compareCpu(x, np.negative, tf.neg)
self._compareCpu(x, np.negative, _NEG)
self._compareCpu(y, self._inv, tf.inv)
self._compareCpu(x, np.square, tf.square)
self._compareCpu(y, np.sqrt, tf.sqrt)
self._compareCpu(y, self._rsqrt, tf.rsqrt)
self._compareCpu(x, np.exp, tf.exp)
self._compareCpu(y, np.log, tf.log)
self._compareCpu(y, np.log1p, tf.log1p)
self._compareCpu(x, np.tanh, tf.tanh)
self._compareCpu(x, self._sigmoid, tf.sigmoid)
self._compareCpu(x, np.sin, tf.sin)
self._compareCpu(x, np.cos, tf.cos)
self._compareBothSparse(x, np.abs, tf.abs)
self._compareBothSparse(x, np.negative, tf.neg)
self._compareBothSparse(x, np.square, tf.square)
self._compareBothSparse(x, np.sqrt, tf.sqrt, 1e-3)
self._compareBothSparse(x, np.tanh, tf.tanh)
# Numpy uses an incorrect definition of sign; use the right one instead.
def complex_sign(x):
return x / np.abs(x)
self._compareCpu(y, complex_sign, tf.sign)
self._compareBothSparse(y, complex_sign, tf.sign)
示例9: drop_layer
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import inv [as 別名]
def drop_layer(x, keep_prob, seed=None, name=None):
"""Computes dropout.
With probability `keep_prob`, outputs the input element scaled up by
`1 / keep_prob`, otherwise outputs `0`. The scaling is so that the expected
sum is unchanged.
Args:
x: A tensor.
keep_prob: A scalar `Tensor` with the same type as x. The probability
that each element is kept.
noise_shape: A 1-D `Tensor` of type `int32`, representing the
shape for randomly generated keep/drop flags.
seed: A Python integer. Used to create random seeds. See
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
for behavior.
name: A name for this operation (optional).
Returns:
A Tensor of the same shape of `x`.
Raises:
ValueError: If `keep_prob` is not in `(0, 1]`.
"""
with tf.op_scope([x], name, "drop_layer") as name:
x = tf.convert_to_tensor(x, name="x")
if isinstance(keep_prob, float) and not 0 < keep_prob <= 1:
raise ValueError("keep_prob must be a scalar tensor or a float in the "
"range (0, 1], got %g" % keep_prob)
keep_prob = tf.convert_to_tensor(keep_prob,
dtype=x.dtype,
name="keep_prob")
keep_prob.get_shape().assert_is_compatible_with(tensor_shape.scalar())
noise_shape = [ tf.shape(x)[0], 1 ]
# uniform [keep_prob, 1.0 + keep_prob)
random_tensor = keep_prob
random_tensor += tf.random_uniform(
noise_shape,
seed=seed,
dtype=x.dtype
)
# 0. if [keep_prob, 1.0) and 1. if [1.0, 1.0 + keep_prob)
binary_tensor = tf.floor(random_tensor)
ret = x * tf.inv(keep_prob) * binary_tensor
ret.set_shape(x.get_shape())
return ret