當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.int8方法代碼示例

本文整理匯總了Python中tensorflow.int8方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.int8方法的具體用法?Python tensorflow.int8怎麽用?Python tensorflow.int8使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.int8方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_dequantize_linear

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int8 [as 別名]
def test_dequantize_linear(self):
    node_def = helper.make_node("DequantizeLinear",
                                ["x", "x_scale", "x_zero_point"], ["y"])
    for x, x_zero_point in [[
        self._get_rnd_int(-128, 127, [2, 6], np.int8),
        self._get_rnd_int(-128, 127, dtype=np.int8)
    ],
                            [
                                self._get_rnd_int(0, 255, [2, 6], np.uint8),
                                self._get_rnd_int(0, 255, dtype=np.uint8)
                            ],
                            [self._get_rnd_int(-512, 512, [2, 6]),
                             np.int32(0)]]:
      x_scale = self._get_rnd_float32(-10., 10)
      y = np.subtract(np.float32(x), np.float32(x_zero_point))
      y = np.multiply(y, x_scale)
      output = run_node(node_def, [x, x_scale, x_zero_point])
      np.testing.assert_almost_equal(output["y"], y) 
開發者ID:onnx,項目名稱:onnx-tensorflow,代碼行數:20,代碼來源:test_node.py

示例2: test_max_pool_2d_dilations_ceil_pads_int8

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int8 [as 別名]
def test_max_pool_2d_dilations_ceil_pads_int8(self):
    if legacy_opset_pre_ver(12):
      raise unittest.SkipTest(
          "ONNX version {} does not support int8 input type.".format(
              defs.onnx_opset_version()))

    kernel_shape = [3, 3]
    strides = [2, 2]
    dilations = [3, 3]
    pads = [1, 1, 2, 2]
    ceil_mode = 1

    input_shape = [10, 3, 23, 23]
    self._test_pooling(input_shape=input_shape,
                       kernel_shape=kernel_shape,
                       strides=strides,
                       dilations=dilations,
                       pads=pads,
                       ceil_mode=ceil_mode,
                       input_dtype=np.int8) 
開發者ID:onnx,項目名稱:onnx-tensorflow,代碼行數:22,代碼來源:test_node.py

示例3: test_quantize_linear

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int8 [as 別名]
def test_quantize_linear(self):
    node_def = helper.make_node("QuantizeLinear",
                                ["x", "y_scale", "y_zero_point"], ["y"])
    for x in [
        self._get_rnd_float32(-512., 512., [2, 6]),
        self._get_rnd_int(-512, 512, [2, 6])
    ]:
      y_scale = self._get_rnd_float32(-10., 10.)
      for y_zero_point in [
          self._get_rnd_int(-128, 127, dtype=np.int8),
          self._get_rnd_int(0, 255, dtype=np.uint8)
      ]:
        y = np.divide(x, y_scale)
        y = np.round(y)
        y = np.add(y, y_zero_point)
        if y_zero_point.dtype.type is np.int8:
          y = np.clip(y, -128, 127).astype(np.int8)
        else:
          y = np.clip(y, 0, 255).astype(np.uint8)
        output = run_node(node_def, [x, y_scale, y_zero_point])
        np.testing.assert_almost_equal(output["y"], y) 
開發者ID:onnx,項目名稱:onnx-tensorflow,代碼行數:23,代碼來源:test_node.py

示例4: testDtype

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int8 [as 別名]
def testDtype(self):
    with self.test_session():
      d = tf.fill([2, 3], 12., name="fill")
      self.assertEqual(d.get_shape(), [2, 3])
      # Test default type for both constant size and dynamic size
      z = tf.zeros([2, 3])
      self.assertEqual(z.dtype, tf.float32)
      self.assertEqual([2, 3], z.get_shape())
      self.assertAllEqual(z.eval(), np.zeros([2, 3]))
      z = tf.zeros(tf.shape(d))
      self.assertEqual(z.dtype, tf.float32)
      self.assertEqual([2, 3], z.get_shape())
      self.assertAllEqual(z.eval(), np.zeros([2, 3]))
      # Test explicit type control
      for dtype in [tf.float32, tf.float64, tf.int32,
                    tf.uint8, tf.int16, tf.int8,
                    tf.complex64, tf.complex128, tf.int64, tf.bool]:
        z = tf.zeros([2, 3], dtype=dtype)
        self.assertEqual(z.dtype, dtype)
        self.assertEqual([2, 3], z.get_shape())
        self.assertAllEqual(z.eval(), np.zeros([2, 3]))
        z = tf.zeros(tf.shape(d), dtype=dtype)
        self.assertEqual(z.dtype, dtype)
        self.assertEqual([2, 3], z.get_shape())
        self.assertAllEqual(z.eval(), np.zeros([2, 3])) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:27,代碼來源:constant_op_test.py

示例5: testOnesLike

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int8 [as 別名]
def testOnesLike(self):
    for dtype in [tf.float32, tf.float64, tf.int32,
                  tf.uint8, tf.int16, tf.int8,
                  tf.complex64, tf.complex128, tf.int64]:
      numpy_dtype = dtype.as_numpy_dtype
      with self.test_session():
        # Creates a tensor of non-zero values with shape 2 x 3.
        d = tf.constant(np.ones((2, 3), dtype=numpy_dtype), dtype=dtype)
        # Constructs a tensor of zeros of the same dimensions and type as "d".
        z_var = tf.ones_like(d)
        # Test that the type is correct
        self.assertEqual(z_var.dtype, dtype)
        z_value = z_var.eval()

      # Test that the value is correct
      self.assertTrue(np.array_equal(z_value, np.array([[1] * 3] * 2)))
      self.assertEqual([2, 3], z_var.get_shape()) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:19,代碼來源:constant_op_test.py

示例6: testLargeInt

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int8 [as 別名]
def testLargeInt(self):
    # Cannot use values outside -128..127 for test, because we're also
    # testing int8
    s = lambda strs: [x.decode("ascii") for x in strs]

    with self.test_session():
      input_ = tf.placeholder(tf.int32)
      int_inputs_ = [np.iinfo(np.int32).min, np.iinfo(np.int32).max]
      output = tf.as_string(input_)
      result = output.eval(feed_dict={input_: int_inputs_})
      self.assertAllEqual(s(result), ["%d" % x for x in int_inputs_])

      input_ = tf.placeholder(tf.int64)
      int_inputs_ = [np.iinfo(np.int64).min, np.iinfo(np.int64).max]
      output = tf.as_string(input_)
      result = output.eval(feed_dict={input_: int_inputs_})
      self.assertAllEqual(s(result), ["%d" % x for x in int_inputs_]) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:19,代碼來源:as_string_op_test.py

示例7: testIntTypes

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int8 [as 別名]
def testIntTypes(self):
    for dtype, nptype in [
        (tf.int32, np.int32),
        (tf.uint8, np.uint8),
        (tf.uint16, np.uint16),
        (tf.int16, np.int16),
        (tf.int8, np.int8)]:
      # Test with array.
      t = tensor_util.make_tensor_proto([10, 20, 30], dtype=dtype)
      self.assertEquals(dtype, t.dtype)
      self.assertProtoEquals("dim { size: 3 }", t.tensor_shape)
      a = tensor_util.MakeNdarray(t)
      self.assertEquals(nptype, a.dtype)
      self.assertAllClose(np.array([10, 20, 30], dtype=nptype), a)
      # Test with ndarray.
      t = tensor_util.make_tensor_proto(np.array([10, 20, 30], dtype=nptype))
      self.assertEquals(dtype, t.dtype)
      self.assertProtoEquals("dim { size: 3 }", t.tensor_shape)
      a = tensor_util.MakeNdarray(t)
      self.assertEquals(nptype, a.dtype)
      self.assertAllClose(np.array([10, 20, 30], dtype=nptype), a) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:23,代碼來源:tensor_util_test.py

示例8: testNumpyConversion

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int8 [as 別名]
def testNumpyConversion(self):
    self.assertIs(tf.float32, tf.as_dtype(np.float32))
    self.assertIs(tf.float64, tf.as_dtype(np.float64))
    self.assertIs(tf.int32, tf.as_dtype(np.int32))
    self.assertIs(tf.int64, tf.as_dtype(np.int64))
    self.assertIs(tf.uint8, tf.as_dtype(np.uint8))
    self.assertIs(tf.uint16, tf.as_dtype(np.uint16))
    self.assertIs(tf.int16, tf.as_dtype(np.int16))
    self.assertIs(tf.int8, tf.as_dtype(np.int8))
    self.assertIs(tf.complex64, tf.as_dtype(np.complex64))
    self.assertIs(tf.complex128, tf.as_dtype(np.complex128))
    self.assertIs(tf.string, tf.as_dtype(np.object))
    self.assertIs(tf.string, tf.as_dtype(np.array(["foo", "bar"]).dtype))
    self.assertIs(tf.bool, tf.as_dtype(np.bool))
    with self.assertRaises(TypeError):
      tf.as_dtype(np.dtype([("f1", np.uint), ("f2", np.int32)])) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:18,代碼來源:dtypes_test.py

示例9: _input

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int8 [as 別名]
def _input(self, dtype='float32', shape=None, name=None):
        
        """Define an input for the recommender.

        Parameters
        ----------
        dtype: str
            Data type: "float16", "float32", "float64", "int8", "int16", "int32", "int64", "bool", or "string".
        shape: list or tuple
            Input shape.
        name: str
            Name of the input.

        Returns
        -------
        Tensorflow placeholder
            Defined tensorflow placeholder.
        """
        if dtype not in self._str_to_dtype:
            raise ValueError
        else:
            return tf.placeholder(self._str_to_dtype[dtype], shape=shape, name=name) 
開發者ID:ylongqi,項目名稱:openrec,代碼行數:24,代碼來源:recommender.py

示例10: test__dtype_to_bytes

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int8 [as 別名]
def test__dtype_to_bytes():
    np_tf_dt = [
        (np.uint8, tf.uint8, b"uint8"),
        (np.uint16, tf.uint16, b"uint16"),
        (np.uint32, tf.uint32, b"uint32"),
        (np.uint64, tf.uint64, b"uint64"),
        (np.int8, tf.int8, b"int8"),
        (np.int16, tf.int16, b"int16"),
        (np.int32, tf.int32, b"int32"),
        (np.int64, tf.int64, b"int64"),
        (np.float16, tf.float16, b"float16"),
        (np.float32, tf.float32, b"float32"),
        (np.float64, tf.float64, b"float64"),
    ]

    for npd, tfd, dt in np_tf_dt:
        npd = np.dtype(npd)
        assert tfrecord._dtype_to_bytes(npd) == dt
        assert tfrecord._dtype_to_bytes(tfd) == dt

    assert tfrecord._dtype_to_bytes("float32") == b"float32"
    assert tfrecord._dtype_to_bytes("foobar") == b"foobar" 
開發者ID:neuronets,項目名稱:nobrainer,代碼行數:24,代碼來源:tfrecord_test.py

示例11: _convert_string_dtype

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int8 [as 別名]
def _convert_string_dtype(dtype):
    if dtype == 'float16':
        return tf.float16
    if dtype == 'float32':
        return tf.float32
    elif dtype == 'float64':
        return tf.float64
    elif dtype == 'int16':
        return tf.int16
    elif dtype == 'int32':
        return tf.int32
    elif dtype == 'int64':
        return tf.int64
    elif dtype == 'uint8':
        return tf.int8
    elif dtype == 'uint16':
        return tf.uint16
    else:
        raise ValueError('Unsupported dtype:', dtype) 
開發者ID:GUR9000,項目名稱:KerasNeuralFingerprint,代碼行數:21,代碼來源:tensorflow_backend.py

示例12: reduce_mean_support_empty

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int8 [as 別名]
def reduce_mean_support_empty(input, keepdims=False):
    return tf.cond(tf.size(input) > 0, lambda: tf.reduce_mean(input, keepdims=keepdims), lambda: tf.zeros_like(input))


# def bit_tensor_list(input):
#     assert input.dtype in [tf.uint8, tf.uint16, tf.uint32, tf.uint64], 'unsupported data type, must be uint*'
#     num_bits = 0
#     if input.dtype == tf.int8:
#         num_bits = 8
#     elif input.dtype == tf.int16:
#         num_bits = 16
#     elif input.dtype == tf.uint32:
#         num_bits = 32
#     elif input.dtype == tf.uint64:
#         num_bits = 64
#     bit_tensors = []
#     for i in range(num_bits):
#         current_bit = 1 << i
#         current_bit_tensor = tf.bitwise.bitwise_and(input, current_bit) == 1
#         bit_tensors.append(current_bit_tensor)
#     print(bit_tensors)
#     return bit_tensors 
開發者ID:christianpayer,項目名稱:MedicalDataAugmentationTool,代碼行數:24,代碼來源:tensorflow_util.py

示例13: parse_a_line_b

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int8 [as 別名]
def parse_a_line_b(value, base_num, signal_num):
    vec = tf.decode_raw(value, tf.int8)

    bases = tf.cast(tf.reshape(tf.strided_slice(vec, [0], [base_num]), [base_num]), dtype=tf.int32)
    means = tf.bitcast(
        tf.reshape(tf.strided_slice(vec, [base_num], [base_num + base_num * 4]), [base_num, 4]),
        type=tf.float32)
    stds = tf.bitcast(
        tf.reshape(tf.strided_slice(vec, [base_num * 5], [base_num * 5 + base_num * 4]), [base_num, 4]),
        type=tf.float32)
    sanum = tf.cast(tf.bitcast(
        tf.reshape(tf.strided_slice(vec, [base_num * 9], [base_num * 9 + base_num * 2]), [base_num, 2]),
        type=tf.int16), dtype=tf.int32)
    signals = tf.bitcast(
        tf.reshape(tf.strided_slice(vec, [base_num * 11], [base_num * 11 + 4 * signal_num]),
                   [signal_num, 4]), type=tf.float32)
    labels = tf.cast(
        tf.reshape(tf.strided_slice(vec, [base_num * 11 + signal_num * 4], [base_num * 11 + signal_num * 4 + 1]),
                   [1]),
        dtype=tf.int32)

    return bases, means, stds, sanum, signals, labels 
開發者ID:bioinfomaticsCSU,項目名稱:deepsignal,代碼行數:24,代碼來源:tf_utils.py

示例14: test_tensor_array_write_read

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int8 [as 別名]
def test_tensor_array_write_read():
    def run(dtype_str, infer_shape, element_shape):
        with tf.Graph().as_default():
            dtype = tf_dtypes[dtype_str]
            np_data = np.array([[1.0, 2.0], [3.0, 4.0]]).astype(dtype_str)
            in_data = [np_data, np_data]
            t1 = tf.constant(np_data, dtype=dtype)
            t2 = tf.constant(np_data, dtype=dtype)
            ta1 = tf.TensorArray(dtype=dtype, size=2, infer_shape=infer_shape,
                                 element_shape=element_shape)
            ta2 = ta1.write(0, t1)
            ta3 = ta2.write(1, t2)
            out = ta3.read(0)
            g = tf.get_default_graph()
            compare_tf_with_tvm([], [], 'TensorArrayReadV3:0', mode='vm')

    for dtype in ["float32", "int8"]:
        run(dtype, False, None)
        run(dtype, False, tf.TensorShape([None, 2]))
        run(dtype, True, None) 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:22,代碼來源:test_forward.py

示例15: test_tensor_array_scatter

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int8 [as 別名]
def test_tensor_array_scatter():
    def run(dtype_str, infer_shape):
        with tf.Graph().as_default():
            dtype =  tf_dtypes[dtype_str]
            if infer_shape:
                element_shape = tf.TensorShape([tf.Dimension(None)])
            else:
                element_shape = None
            t = tf.constant(np.array([[1.0], [2.0], [3.0]]).astype(dtype_str), dtype=dtype)
            indices = tf.constant([2, 1, 0])
            ta1 = tf.TensorArray(dtype=dtype, size=3,
                                 infer_shape=infer_shape,
                                 element_shape=element_shape)
            ta2 = ta1.scatter(indices, t)
            out0 = ta2.read(0)
            out1 = ta2.read(1)
            out2 = ta2.read(2)
            g = tf.get_default_graph()
            compare_tf_with_tvm([], [], ['TensorArrayReadV3:0'], mode='vm')
            compare_tf_with_tvm([], [], ['TensorArrayReadV3_1:0'], mode='vm')
            compare_tf_with_tvm([], [], ['TensorArrayReadV3_2:0'], mode='vm')
    for dtype in ["float32", "int8"]:
        run(dtype, False)
        run(dtype, True) 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:26,代碼來源:test_forward.py


注:本文中的tensorflow.int8方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。