當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.int64方法代碼示例

本文整理匯總了Python中tensorflow.int64方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.int64方法的具體用法?Python tensorflow.int64怎麽用?Python tensorflow.int64使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.int64方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: read_from_tfrecord

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int64 [as 別名]
def read_from_tfrecord(filenames):
    tfrecord_file_queue = tf.train.string_input_producer(filenames, name='queue')
    reader = tf.TFRecordReader()
    _, tfrecord_serialized = reader.read(tfrecord_file_queue)

    tfrecord_features = tf.parse_single_example(tfrecord_serialized, features={
        'label': tf.FixedLenFeature([],tf.int64),
        'shape': tf.FixedLenFeature([],tf.string),
        'image': tf.FixedLenFeature([],tf.string),
    }, name='features')

    image = tf.decode_raw(tfrecord_features['image'], tf.uint8)
    shape = tf.decode_raw(tfrecord_features['shape'], tf.int32)

    image = tf.reshape(image, shape)
    label = tfrecord_features['label']
    return label, shape, image 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:19,代碼來源:18_basic_tfrecord.py

示例2: build_inputs

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int64 [as 別名]
def build_inputs(self):
    if self.mode == "encode":
      # Encode mode doesn't read from disk, so defer to parent.
      return super(SkipThoughtsModel, self).build_inputs()
    else:
      # Replace disk I/O with random Tensors.
      self.encode_ids = tf.random_uniform(
          [self.config.batch_size, 15],
          minval=0,
          maxval=self.config.vocab_size,
          dtype=tf.int64)
      self.decode_pre_ids = tf.random_uniform(
          [self.config.batch_size, 15],
          minval=0,
          maxval=self.config.vocab_size,
          dtype=tf.int64)
      self.decode_post_ids = tf.random_uniform(
          [self.config.batch_size, 15],
          minval=0,
          maxval=self.config.vocab_size,
          dtype=tf.int64)
      self.encode_mask = tf.ones_like(self.encode_ids)
      self.decode_pre_mask = tf.ones_like(self.decode_pre_ids)
      self.decode_post_mask = tf.ones_like(self.decode_post_ids) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:26,代碼來源:skip_thoughts_model_test.py

示例3: _read_single_sequence_example

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int64 [as 別名]
def _read_single_sequence_example(file_list, tokens_shape=None):
  """Reads and parses SequenceExamples from TFRecord-encoded file_list."""
  tf.logging.info('Constructing TFRecordReader from files: %s', file_list)
  file_queue = tf.train.string_input_producer(file_list)
  reader = tf.TFRecordReader()
  seq_key, serialized_record = reader.read(file_queue)
  ctx, sequence = tf.parse_single_sequence_example(
      serialized_record,
      sequence_features={
          data_utils.SequenceWrapper.F_TOKEN_ID:
              tf.FixedLenSequenceFeature(tokens_shape or [], dtype=tf.int64),
          data_utils.SequenceWrapper.F_LABEL:
              tf.FixedLenSequenceFeature([], dtype=tf.int64),
          data_utils.SequenceWrapper.F_WEIGHT:
              tf.FixedLenSequenceFeature([], dtype=tf.float32),
      })
  return seq_key, ctx, sequence 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:19,代碼來源:inputs.py

示例4: loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int64 [as 別名]
def loss(logits, labels):
  """Add L2Loss to all the trainable variables.

  Add summary for "Loss" and "Loss/avg".
  Args:
    logits: Logits from inference().
    labels: Labels from distorted_inputs or inputs(). 1-D tensor
            of shape [batch_size]

  Returns:
    Loss tensor of type float.
  """
  # Calculate the average cross entropy loss across the batch.
  labels = tf.cast(labels, tf.int64)
  cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
      labels=labels, logits=logits, name='cross_entropy_per_example')
  cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
  tf.add_to_collection('losses', cross_entropy_mean)

  # The total loss is defined as the cross entropy loss plus all of the weight
  # decay terms (L2 loss).
  return tf.add_n(tf.get_collection('losses'), name='total_loss') 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:24,代碼來源:cifar10.py

示例5: build_cross_entropy_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int64 [as 別名]
def build_cross_entropy_loss(logits, gold):
  """Constructs a cross entropy from logits and one-hot encoded gold labels.

  Supports skipping rows where the gold label is the magic -1 value.

  Args:
    logits: float Tensor of scores.
    gold: int Tensor of one-hot labels.

  Returns:
    cost, correct, total: the total cost, the total number of correctly
        predicted labels, and the total number of valid labels.
  """
  valid = tf.reshape(tf.where(tf.greater(gold, -1)), [-1])
  gold = tf.gather(gold, valid)
  logits = tf.gather(logits, valid)
  correct = tf.reduce_sum(tf.to_int32(tf.nn.in_top_k(logits, gold, 1)))
  total = tf.size(gold)
  cost = tf.reduce_sum(
      tf.contrib.nn.deprecated_flipped_sparse_softmax_cross_entropy_with_logits(
          logits, tf.cast(gold, tf.int64))) / tf.cast(total, tf.float32)
  return cost, correct, total 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:24,代碼來源:bulk_component.py

示例6: global_step

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int64 [as 別名]
def global_step(device=''):
  """Returns the global step variable.

  Args:
    device: Optional device to place the variable. It can be an string or a
      function that is called to get the device for the variable.

  Returns:
    the tensor representing the global step variable.
  """
  global_step_ref = tf.get_collection(tf.GraphKeys.GLOBAL_STEP)
  if global_step_ref:
    return global_step_ref[0]
  else:
    collections = [
        VARIABLES_TO_RESTORE,
        tf.GraphKeys.GLOBAL_VARIABLES,
        tf.GraphKeys.GLOBAL_STEP,
    ]
    # Get the device for the variable.
    with tf.device(variable_device(device, 'global_step')):
      return tf.get_variable('global_step', shape=[], dtype=tf.int64,
                             initializer=tf.zeros_initializer(),
                             trainable=False, collections=collections) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:26,代碼來源:variables.py

示例7: test_indices_to_dense_vector_int

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int64 [as 別名]
def test_indices_to_dense_vector_int(self):
    size = 500
    num_indices = 25
    rand_indices = np.random.permutation(np.arange(size))[0:num_indices]

    expected_output = np.zeros(size, dtype=np.int64)
    expected_output[rand_indices] = 1

    tf_rand_indices = tf.constant(rand_indices)
    indicator = ops.indices_to_dense_vector(
        tf_rand_indices, size, 1, dtype=tf.int64)

    with self.test_session() as sess:
      output = sess.run(indicator)
      self.assertAllEqual(output, expected_output)
      self.assertEqual(output.dtype, expected_output.dtype) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:18,代碼來源:ops_test.py

示例8: build_inputs

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int64 [as 別名]
def build_inputs(self):
    if self.mode == "inference":
      # Inference mode doesn't read from disk, so defer to parent.
      return super(ShowAndTellModel, self).build_inputs()
    else:
      # Replace disk I/O with random Tensors.
      self.images = tf.random_uniform(
          shape=[self.config.batch_size, self.config.image_height,
                 self.config.image_width, 3],
          minval=-1,
          maxval=1)
      self.input_seqs = tf.random_uniform(
          [self.config.batch_size, 15],
          minval=0,
          maxval=self.config.vocab_size,
          dtype=tf.int64)
      self.target_seqs = tf.random_uniform(
          [self.config.batch_size, 15],
          minval=0,
          maxval=self.config.vocab_size,
          dtype=tf.int64)
      self.input_mask = tf.ones_like(self.input_seqs) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:24,代碼來源:show_and_tell_model_test.py

示例9: ones_matrix_band_part

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int64 [as 別名]
def ones_matrix_band_part(rows, cols, num_lower, num_upper, out_shape=None):
  """Matrix band part of ones."""
  if all([isinstance(el, int) for el in [rows, cols, num_lower, num_upper]]):
    # Needed info is constant, so we construct in numpy
    if num_lower < 0:
      num_lower = rows - 1
    if num_upper < 0:
      num_upper = cols - 1
    lower_mask = np.tri(cols, rows, num_lower).T
    upper_mask = np.tri(rows, cols, num_upper)
    band = np.ones((rows, cols)) * lower_mask * upper_mask
    if out_shape:
      band = band.reshape(out_shape)
    band = tf.constant(band, tf.float32)
  else:
    band = tf.matrix_band_part(
        tf.ones([rows, cols]), tf.cast(num_lower, tf.int64),
        tf.cast(num_upper, tf.int64))
    if out_shape:
      band = tf.reshape(band, out_shape)

  return band 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:24,代碼來源:common_layers.py

示例10: add_task_id

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int64 [as 別名]
def add_task_id(self, task, example):
    """Convert example to code switching mode by adding a task id."""
    if hasattr(task, "class_labels"):
      # TODO(urvashik): handle the case where num_labels > 9
      example["targets"] = tf.cast(discretization.int_to_bit(
          example["targets"], 1, base=10) + 50, tf.int64)
      example["targets"] = tf.squeeze(example["targets"], axis=[-1])

    if task.has_inputs:
      inputs = example.pop("inputs")
      concat_list = [inputs, [task.task_id], example["targets"]]
    else:
      concat_list = [[task.task_id], example["targets"]]

    example["targets"] = tf.concat(concat_list, 0)
    return example 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:18,代碼來源:multi_problem.py

示例11: extra_reading_spec

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int64 [as 別名]
def extra_reading_spec(self):
    """Additional data fields to store on disk and their decoders."""

    # TODO(piotrmilos): shouldn't done be included here?
    data_fields = {
        "frame_number": tf.FixedLenFeature([1], tf.int64),
        "action": tf.FixedLenFeature([1], tf.int64),
        "reward": tf.FixedLenFeature([1], tf.int64)
    }
    decoders = {
        "frame_number":
            tf.contrib.slim.tfexample_decoder.Tensor(tensor_key="frame_number"),
        "action":
            tf.contrib.slim.tfexample_decoder.Tensor(tensor_key="action"),
        "reward":
            tf.contrib.slim.tfexample_decoder.Tensor(tensor_key="reward"),
    }
    return data_fields, decoders 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:20,代碼來源:gym_problems.py

示例12: decode_example

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int64 [as 別名]
def decode_example(self, serialized_example):
    """Return a dict of Tensors from a serialized tensorflow.Example."""
    data_fields, data_items_to_decoders = self.example_reading_spec()
    # Necessary to rejoin examples in the correct order with the Cloud ML Engine
    # batch prediction API.
    data_fields["batch_prediction_key"] = tf.FixedLenFeature([1], tf.int64, 0)
    if data_items_to_decoders is None:
      data_items_to_decoders = {
          field: tf.contrib.slim.tfexample_decoder.Tensor(field)
          for field in data_fields
      }

    decoder = tf.contrib.slim.tfexample_decoder.TFExampleDecoder(
        data_fields, data_items_to_decoders)

    decode_items = list(sorted(data_items_to_decoders))
    decoded = decoder.decode(serialized_example, items=decode_items)
    return dict(zip(decode_items, decoded)) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:20,代碼來源:problem.py

示例13: serving_input_fn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int64 [as 別名]
def serving_input_fn(self, hparams):
    """Input fn for serving export, starting from serialized example."""
    mode = tf.estimator.ModeKeys.PREDICT
    serialized_example = tf.placeholder(
        dtype=tf.string, shape=[None], name="serialized_example")
    dataset = tf.data.Dataset.from_tensor_slices(serialized_example)
    dataset = dataset.map(self.decode_example)
    dataset = dataset.map(lambda ex: self.preprocess_example(ex, mode, hparams))
    dataset = dataset.map(self.maybe_reverse_and_copy)
    dataset = dataset.map(data_reader.cast_ints_to_int32)
    dataset = dataset.padded_batch(
        tf.shape(serialized_example, out_type=tf.int64)[0],
        dataset.output_shapes)
    dataset = dataset.map(standardize_shapes)
    features = tf.contrib.data.get_single_element(dataset)

    if self.has_inputs:
      features.pop("targets", None)

    return tf.estimator.export.ServingInputReceiver(
        features=features, receiver_tensors=serialized_example) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:23,代碼來源:problem.py

示例14: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int64 [as 別名]
def __init__(self, pc: _Network3D, config, centers, sess, freqs_resolution=1e9):
        """
        :param sess: Must be set at the latest before using get_pr or get_freqs
        """
        self.pc_class = pc.__class__
        self.config = config
        self.input_ctx_shape = self.pc_class.get_context_shape(config)
        self.input_ctx = tf.placeholder(tf.int64, self.input_ctx_shape)  # symbols!
        input_ctx_batched = tf.expand_dims(self.input_ctx, 0)  # add batch dimension, 1DHW
        input_ctx_batched = tf.expand_dims(input_ctx_batched, -1)  # add T dimension for 3d conv, now 1CHW1
        # Here, in contrast to pc.bitcost(...), q does not need to be padded, as it is part of some context.
        # Logits will be a 1111L vector, i.e., prediction of the next pixel
        q = tf.gather(centers, input_ctx_batched)
        logits = pc.logits(q, is_training=False)
        self.pr = tf.nn.softmax(logits)
        self.freqs = tf.squeeze(tf.cast(self.pr * freqs_resolution, tf.int64))
        self.sess = sess

        self._get_freqs = None 
開發者ID:fab-jul,項目名稱:imgcomp-cvpr,代碼行數:21,代碼來源:probclass.py

示例15: parse_tfrecord_tf

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int64 [as 別名]
def parse_tfrecord_tf(record):
    features = tf.parse_single_example(record, features={
        'shape': tf.FixedLenFeature([3], tf.int64),
        'data': tf.FixedLenFeature([], tf.string)})
    data = tf.decode_raw(features['data'], tf.uint8)
    return tf.reshape(data, features['shape']) 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:8,代碼來源:dataset.py


注:本文中的tensorflow.int64方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。