當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.int32方法代碼示例

本文整理匯總了Python中tensorflow.int32方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.int32方法的具體用法?Python tensorflow.int32怎麽用?Python tensorflow.int32使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.int32方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int32 [as 別名]
def __init__(self, resolution=1024, num_channels=3, dtype='uint8', dynamic_range=[0,255], label_size=0, label_dtype='float32'):
        self.resolution         = resolution
        self.resolution_log2    = int(np.log2(resolution))
        self.shape              = [num_channels, resolution, resolution]
        self.dtype              = dtype
        self.dynamic_range      = dynamic_range
        self.label_size         = label_size
        self.label_dtype        = label_dtype
        self._tf_minibatch_var  = None
        self._tf_lod_var        = None
        self._tf_minibatch_np   = None
        self._tf_labels_np      = None

        assert self.resolution == 2 ** self.resolution_log2
        with tf.name_scope('Dataset'):
            self._tf_minibatch_var = tf.Variable(np.int32(0), name='minibatch_var')
            self._tf_lod_var = tf.Variable(np.int32(0), name='lod_var') 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:19,代碼來源:dataset.py

示例2: structure

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int32 [as 別名]
def structure(self, input_tensor):
        """
        Args:
            input_tensor: NHWC
        """
        rnd = tf.random_uniform((), 135, 160, dtype=tf.int32)
        rescaled = tf.image.resize_images(
            input_tensor, [rnd, rnd], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
        h_rem = 160 - rnd
        w_rem = 160 - rnd
        pad_left = tf.random_uniform((), 0, w_rem, dtype=tf.int32)
        pad_right = w_rem - pad_left
        pad_top = tf.random_uniform((), 0, h_rem, dtype=tf.int32)
        pad_bottom = h_rem - pad_top
        padded = tf.pad(rescaled, [[0, 0], [pad_top, pad_bottom], [
                        pad_left, pad_right], [0, 0]])
        padded.set_shape((input_tensor.shape[0], 160, 160, 3))
        output = tf.cond(tf.random_uniform(shape=[1])[0] < tf.constant(0.9),
                         lambda: padded, lambda: input_tensor)
        return output 
開發者ID:ppwwyyxx,項目名稱:Adversarial-Face-Attack,代碼行數:22,代碼來源:face_attack.py

示例3: time_stretch

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int32 [as 別名]
def time_stretch(
        spectrogram,
        factor=1.0,
        method=tf.image.ResizeMethod.BILINEAR):
    """ Time stretch a spectrogram preserving shape in tensorflow. Note that
    this is an approximation in the frequency domain.

    :param spectrogram: Input spectrogram to be time stretched as tensor.
    :param factor: (Optional) Time stretch factor, must be >0, default to 1.
    :param mehtod: (Optional) Interpolation method, default to BILINEAR.
    :returns: Time stretched spectrogram as tensor with same shape.
    """
    T = tf.shape(spectrogram)[0]
    T_ts = tf.cast(tf.cast(T, tf.float32) * factor, tf.int32)[0]
    F = tf.shape(spectrogram)[1]
    ts_spec = tf.image.resize_images(
        spectrogram,
        [T_ts, F],
        method=method,
        align_corners=True)
    return tf.image.resize_image_with_crop_or_pad(ts_spec, T, F) 
開發者ID:deezer,項目名稱:spleeter,代碼行數:23,代碼來源:spectrogram.py

示例4: pitch_shift

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int32 [as 別名]
def pitch_shift(
        spectrogram,
        semitone_shift=0.0,
        method=tf.image.ResizeMethod.BILINEAR):
    """ Pitch shift a spectrogram preserving shape in tensorflow. Note that
    this is an approximation in the frequency domain.

    :param spectrogram: Input spectrogram to be pitch shifted as tensor.
    :param semitone_shift: (Optional) Pitch shift in semitone, default to 0.0.
    :param mehtod: (Optional) Interpolation method, default to BILINEAR.
    :returns: Pitch shifted spectrogram (same shape as spectrogram).
    """
    factor = 2 ** (semitone_shift / 12.)
    T = tf.shape(spectrogram)[0]
    F = tf.shape(spectrogram)[1]
    F_ps = tf.cast(tf.cast(F, tf.float32) * factor, tf.int32)[0]
    ps_spec = tf.image.resize_images(
        spectrogram,
        [T, F_ps],
        method=method,
        align_corners=True)
    paddings = [[0, 0], [0, tf.maximum(0, F - F_ps)], [0, 0]]
    return tf.pad(ps_spec[:, :F, :], paddings, 'CONSTANT') 
開發者ID:deezer,項目名稱:spleeter,代碼行數:25,代碼來源:spectrogram.py

示例5: input_fn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int32 [as 別名]
def input_fn(partition, training, batch_size):
    """Generate an input_fn for the Estimator."""

    def _input_fn():
        if partition == "train":
            dataset = tf.data.Dataset.from_generator(
                generator(x_train, y_train), (tf.float32, tf.int32), ((28, 28), ()))
        else:
            dataset = tf.data.Dataset.from_generator(
                generator(x_test, y_test), (tf.float32, tf.int32), ((28, 28), ()))

        if training:
            dataset = dataset.shuffle(10 * batch_size, seed=RANDOM_SEED).repeat()

        dataset = dataset.map(preprocess_image).batch(batch_size)
        iterator = dataset.make_one_shot_iterator()
        features, labels = iterator.get_next()
        return features, labels
    return _input_fn 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:21,代碼來源:2_simple_mnist.py

示例6: read_from_tfrecord

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int32 [as 別名]
def read_from_tfrecord(filenames):
    tfrecord_file_queue = tf.train.string_input_producer(filenames, name='queue')
    reader = tf.TFRecordReader()
    _, tfrecord_serialized = reader.read(tfrecord_file_queue)

    tfrecord_features = tf.parse_single_example(tfrecord_serialized, features={
        'label': tf.FixedLenFeature([],tf.int64),
        'shape': tf.FixedLenFeature([],tf.string),
        'image': tf.FixedLenFeature([],tf.string),
    }, name='features')

    image = tf.decode_raw(tfrecord_features['image'], tf.uint8)
    shape = tf.decode_raw(tfrecord_features['shape'], tf.int32)

    image = tf.reshape(image, shape)
    label = tfrecord_features['label']
    return label, shape, image 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:19,代碼來源:18_basic_tfrecord.py

示例7: main

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int32 [as 別名]
def main():
    dataset = tf.data.Dataset.from_generator(gen, (tf.int32, tf.int32),
                                             (tf.TensorShape([BATCH_SIZE]),
                                              tf.TensorShape([BATCH_SIZE, 1])))
    optimizer = tf.compat.v1.train.GradientDescentOptimizer(LEARNING_RATE)
    model = Word2Vec(vocab_size=VOCAB_SIZE, embed_size=EMBED_SIZE)
    grad_fn = tfe.implicit_value_and_gradients(model.compute_loss)
    total_loss = 0.0
    num_train_steps = 0
    while num_train_steps < NUM_TRAIN_STEPS:
        for center_words, target_words in tfe.Iterator(dataset):
            if num_train_steps >= NUM_TRAIN_STEPS:
                break
            loss_batch, grads = grad_fn(center_words, target_words)
            total_loss += loss_batch
            optimizer.apply_gradients(grads)
            if (num_train_steps + 1) % SKIP_STEP == 0:
                print('Average loss at step {}: {:5.1f}'.format(
                    num_train_steps, total_loss / SKIP_STEP
                ))
                total_loss = 0.0
            num_train_steps += 1 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:24,代碼來源:9_w2v_eager.py

示例8: apply_with_random_selector

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int32 [as 別名]
def apply_with_random_selector(x, func, num_cases):
  """Computes func(x, sel), with sel sampled from [0...num_cases-1].

  Args:
    x: input Tensor.
    func: Python function to apply.
    num_cases: Python int32, number of cases to sample sel from.

  Returns:
    The result of func(x, sel), where func receives the value of the
    selector as a python integer, but sel is sampled dynamically.
  """
  sel = tf.random_uniform([], maxval=num_cases, dtype=tf.int32)
  # Pass the real x only to one of the func calls.
  return control_flow_ops.merge([
      func(control_flow_ops.switch(x, tf.equal(sel, case))[1], case)
      for case in range(num_cases)])[0] 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:19,代碼來源:inception_preprocessing.py

示例9: _aspect_preserving_resize

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int32 [as 別名]
def _aspect_preserving_resize(image, smallest_side):
  """Resize images preserving the original aspect ratio.

  Args:
    image: A 3-D image `Tensor`.
    smallest_side: A python integer or scalar `Tensor` indicating the size of
      the smallest side after resize.

  Returns:
    resized_image: A 3-D tensor containing the resized image.
  """
  smallest_side = tf.convert_to_tensor(smallest_side, dtype=tf.int32)

  shape = tf.shape(image)
  height = shape[0]
  width = shape[1]
  new_height, new_width = _smallest_size_at_least(height, width, smallest_side)
  image = tf.expand_dims(image, 0)
  resized_image = tf.image.resize_bilinear(image, [new_height, new_width],
                                           align_corners=False)
  resized_image = tf.squeeze(resized_image)
  resized_image.set_shape([None, None, 3])
  return resized_image 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:25,代碼來源:vgg_preprocessing.py

示例10: read_analogies

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int32 [as 別名]
def read_analogies(self):
    """Reads through the analogy question file.

    Returns:
      questions: a [n, 4] numpy array containing the analogy question's
                 word ids.
      questions_skipped: questions skipped due to unknown words.
    """
    questions = []
    questions_skipped = 0
    with open(self._options.eval_data, "rb") as analogy_f:
      for line in analogy_f:
        if line.startswith(b":"):  # Skip comments.
          continue
        words = line.strip().lower().split(b" ")
        ids = [self._word2id.get(w.strip()) for w in words]
        if None in ids or len(ids) != 4:
          questions_skipped += 1
        else:
          questions.append(np.array(ids))
    print("Eval analogy file: ", self._options.eval_data)
    print("Questions: ", len(questions))
    print("Skipped: ", questions_skipped)
    self._analogy_questions = np.array(questions, dtype=np.int32) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:26,代碼來源:word2vec_optimized.py

示例11: apply_with_random_selector

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int32 [as 別名]
def apply_with_random_selector(x, func, num_cases):
  """Computes func(x, sel), with sel sampled from [0...num_cases-1].

  Args:
    x: input Tensor.
    func: Python function to apply.
    num_cases: Python int32, number of cases to sample sel from.

  Returns:
    The result of func(x, sel), where func receives the value of the
    selector as a python integer, but sel is sampled dynamically.
  """
  sel = tf.random_uniform([], maxval=num_cases, dtype=tf.int32)
  # Pass the real x only to one of the func calls.
  return control_flow_ops.merge([
      func(control_flow_ops.switch(x, tf.equal(sel, case))[1], case)
      for case in range(num_cases)
  ])[0] 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:20,代碼來源:inception_preprocessing.py

示例12: get_hash_slots

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int32 [as 別名]
def get_hash_slots(self, query):
    """Gets hashed-to buckets for batch of queries.

    Args:
      query: 2-d Tensor of query vectors.

    Returns:
      A list of hashed-to buckets for each hash function.
    """

    binary_hash = [
        tf.less(tf.matmul(query, self.hash_vecs[i], transpose_b=True), 0)
        for i in xrange(self.num_libraries)]
    hash_slot_idxs = [
        tf.reduce_sum(
            tf.to_int32(binary_hash[i]) *
            tf.constant([[2 ** i for i in xrange(self.num_hashes)]],
                        dtype=tf.int32), 1)
        for i in xrange(self.num_libraries)]
    return hash_slot_idxs 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:22,代碼來源:memory.py

示例13: batch_of_random_bools

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int32 [as 別名]
def batch_of_random_bools(batch_size, n):
  """Return a batch of random "boolean" numbers.

  Args:
    batch_size:  Batch size dimension of returned tensor.
    n:  number of entries per batch.

  Returns:
    A [batch_size, n] tensor of "boolean" numbers, where each number is
    preresented as -1 or 1.
  """

  as_int = tf.random_uniform(
      [batch_size, n], minval=0, maxval=2, dtype=tf.int32)
  expanded_range = (as_int * 2) - 1
  return tf.cast(expanded_range, tf.float32) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:18,代碼來源:train_eval.py

示例14: test_construct_anchor_grid_unnormalized

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int32 [as 別名]
def test_construct_anchor_grid_unnormalized(self):
    base_anchor_size = tf.constant([1, 1], dtype=tf.float32)
    box_specs_list = [[(1.0, 1.0)]]

    exp_anchor_corners = [[0., 0., 320., 320.], [0., 320., 320., 640.]]

    anchor_generator = ag.MultipleGridAnchorGenerator(box_specs_list,
                                                      base_anchor_size)
    anchors = anchor_generator.generate(
        feature_map_shape_list=[(tf.constant(1, dtype=tf.int32), tf.constant(
            2, dtype=tf.int32))],
        im_height=320,
        im_width=640)
    anchor_corners = anchors.get()

    with self.test_session():
      anchor_corners_out = anchor_corners.eval()
      self.assertAllClose(anchor_corners_out, exp_anchor_corners) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:20,代碼來源:multiple_grid_anchor_generator_test.py

示例15: _reshape_instance_masks

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int32 [as 別名]
def _reshape_instance_masks(self, keys_to_tensors):
    """Reshape instance segmentation masks.

    The instance segmentation masks are reshaped to [num_instances, height,
    width] and cast to boolean type to save memory.

    Args:
      keys_to_tensors: a dictionary from keys to tensors.

    Returns:
      A 3-D boolean tensor of shape [num_instances, height, width].
    """
    masks = keys_to_tensors['image/segmentation/object']
    if isinstance(masks, tf.SparseTensor):
      masks = tf.sparse_tensor_to_dense(masks)
    height = keys_to_tensors['image/height']
    width = keys_to_tensors['image/width']
    to_shape = tf.cast(tf.stack([-1, height, width]), tf.int32)

    return tf.cast(tf.reshape(masks, to_shape), tf.bool) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:22,代碼來源:tf_example_decoder.py


注:本文中的tensorflow.int32方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。