本文整理匯總了Python中tensorflow.int16方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.int16方法的具體用法?Python tensorflow.int16怎麽用?Python tensorflow.int16使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.int16方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: diet_adam_optimizer_params
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int16 [as 別名]
def diet_adam_optimizer_params():
"""Default hyperparameters for a DietAdamOptimizer.
Returns:
a hyperparameters object.
"""
return tf.contrib.training.HParams(
quantize=True, # use 16-bit fixed-point
quantization_scale=10.0 / tf.int16.max,
optimizer="DietAdam",
learning_rate=1.0,
learning_rate_warmup_steps=2000,
learning_rate_decay_scheme="noam", # "noam" or "none"
epsilon=1e-10,
beta1=0.0, # we can save memory if beta1=0
beta2=0.98,
factored_second_moment_accumulator=True, # this saves memory
)
示例2: _quantize
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int16 [as 別名]
def _quantize(x, params, randomize=True):
"""Quantize x according to params, optionally randomizing the rounding."""
if not params.quantize:
return x
if not randomize:
return tf.bitcast(
tf.cast(x / params.quantization_scale, tf.int16), tf.float16)
abs_x = tf.abs(x)
sign_x = tf.sign(x)
y = abs_x / params.quantization_scale
y = tf.floor(y + tf.random_uniform(common_layers.shape_list(x)))
y = tf.minimum(y, tf.int16.max) * sign_x
q = tf.bitcast(tf.cast(y, tf.int16), tf.float16)
return q
示例3: decode_pred
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int16 [as 別名]
def decode_pred(serialized_example):
"""Parses prediction data from the given `serialized_example`."""
features = tf.parse_single_example(
serialized_example,
features={
'T1':tf.FixedLenFeature([],tf.string),
'T2':tf.FixedLenFeature([], tf.string)
})
patch_shape = [conf.patch_size, conf.patch_size, conf.patch_size]
# Convert from a scalar string tensor
image_T1 = tf.decode_raw(features['T1'], tf.int16)
image_T1 = tf.reshape(image_T1, patch_shape)
image_T2 = tf.decode_raw(features['T2'], tf.int16)
image_T2 = tf.reshape(image_T2, patch_shape)
# Convert dtype.
image_T1 = tf.cast(image_T1, tf.float32)
image_T2 = tf.cast(image_T2, tf.float32)
label = tf.zeros(image_T1.shape) # pseudo label
return image_T1, image_T2, label
示例4: diet_adam_optimizer_params
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int16 [as 別名]
def diet_adam_optimizer_params():
"""Default hyperparameters for a DietAdamOptimizer.
Returns:
a hyperparameters object.
"""
return hparam.HParams(
quantize=True, # use 16-bit fixed-point
quantization_scale=10.0 / tf.int16.max,
optimizer="DietAdam",
learning_rate=1.0,
learning_rate_warmup_steps=2000,
learning_rate_decay_scheme="noam", # "noam" or "none"
epsilon=1e-10,
beta1=0.0, # we can save memory if beta1=0
beta2=0.98,
factored_second_moment_accumulator=True, # this saves memory
)
示例5: testZeros
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int16 [as 別名]
def testZeros(self):
with self.test_session(use_gpu=True):
for dtype in tf.uint8, tf.int16, tf.int32, tf.int64:
zero = tf.constant(0, dtype=dtype)
one = tf.constant(1, dtype=dtype)
bads = [one // zero]
if dtype in (tf.int32, tf.int64):
bads.append(one % zero)
for bad in bads:
try:
result = bad.eval()
except tf.OpError as e:
# Ideally, we'd get a nice exception. In theory, this should only
# happen on CPU, but 32 bit integer GPU division is actually on
# CPU due to a placer bug.
# TODO(irving): Make stricter once the placer bug is fixed.
self.assertIn('Integer division by zero', str(e))
else:
# On the GPU, integer division by zero produces all bits set.
# But apparently on some GPUs "all bits set" for 64 bit division
# means 32 bits set, so we allow 0xffffffff as well. This isn't
# very portable, so we may need to expand this list if other GPUs
# do different things.
self.assertTrue(tf.test.is_gpu_available())
self.assertIn(result, (-1, 0xff, 0xffffffff))
示例6: testDtype
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int16 [as 別名]
def testDtype(self):
with self.test_session():
d = tf.fill([2, 3], 12., name="fill")
self.assertEqual(d.get_shape(), [2, 3])
# Test default type for both constant size and dynamic size
z = tf.zeros([2, 3])
self.assertEqual(z.dtype, tf.float32)
self.assertEqual([2, 3], z.get_shape())
self.assertAllEqual(z.eval(), np.zeros([2, 3]))
z = tf.zeros(tf.shape(d))
self.assertEqual(z.dtype, tf.float32)
self.assertEqual([2, 3], z.get_shape())
self.assertAllEqual(z.eval(), np.zeros([2, 3]))
# Test explicit type control
for dtype in [tf.float32, tf.float64, tf.int32,
tf.uint8, tf.int16, tf.int8,
tf.complex64, tf.complex128, tf.int64, tf.bool]:
z = tf.zeros([2, 3], dtype=dtype)
self.assertEqual(z.dtype, dtype)
self.assertEqual([2, 3], z.get_shape())
self.assertAllEqual(z.eval(), np.zeros([2, 3]))
z = tf.zeros(tf.shape(d), dtype=dtype)
self.assertEqual(z.dtype, dtype)
self.assertEqual([2, 3], z.get_shape())
self.assertAllEqual(z.eval(), np.zeros([2, 3]))
示例7: testOnesLike
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int16 [as 別名]
def testOnesLike(self):
for dtype in [tf.float32, tf.float64, tf.int32,
tf.uint8, tf.int16, tf.int8,
tf.complex64, tf.complex128, tf.int64]:
numpy_dtype = dtype.as_numpy_dtype
with self.test_session():
# Creates a tensor of non-zero values with shape 2 x 3.
d = tf.constant(np.ones((2, 3), dtype=numpy_dtype), dtype=dtype)
# Constructs a tensor of zeros of the same dimensions and type as "d".
z_var = tf.ones_like(d)
# Test that the type is correct
self.assertEqual(z_var.dtype, dtype)
z_value = z_var.eval()
# Test that the value is correct
self.assertTrue(np.array_equal(z_value, np.array([[1] * 3] * 2)))
self.assertEqual([2, 3], z_var.get_shape())
示例8: testIntTypes
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int16 [as 別名]
def testIntTypes(self):
for dtype, nptype in [
(tf.int32, np.int32),
(tf.uint8, np.uint8),
(tf.uint16, np.uint16),
(tf.int16, np.int16),
(tf.int8, np.int8)]:
# Test with array.
t = tensor_util.make_tensor_proto([10, 20, 30], dtype=dtype)
self.assertEquals(dtype, t.dtype)
self.assertProtoEquals("dim { size: 3 }", t.tensor_shape)
a = tensor_util.MakeNdarray(t)
self.assertEquals(nptype, a.dtype)
self.assertAllClose(np.array([10, 20, 30], dtype=nptype), a)
# Test with ndarray.
t = tensor_util.make_tensor_proto(np.array([10, 20, 30], dtype=nptype))
self.assertEquals(dtype, t.dtype)
self.assertProtoEquals("dim { size: 3 }", t.tensor_shape)
a = tensor_util.MakeNdarray(t)
self.assertEquals(nptype, a.dtype)
self.assertAllClose(np.array([10, 20, 30], dtype=nptype), a)
示例9: testNumpyConversion
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int16 [as 別名]
def testNumpyConversion(self):
self.assertIs(tf.float32, tf.as_dtype(np.float32))
self.assertIs(tf.float64, tf.as_dtype(np.float64))
self.assertIs(tf.int32, tf.as_dtype(np.int32))
self.assertIs(tf.int64, tf.as_dtype(np.int64))
self.assertIs(tf.uint8, tf.as_dtype(np.uint8))
self.assertIs(tf.uint16, tf.as_dtype(np.uint16))
self.assertIs(tf.int16, tf.as_dtype(np.int16))
self.assertIs(tf.int8, tf.as_dtype(np.int8))
self.assertIs(tf.complex64, tf.as_dtype(np.complex64))
self.assertIs(tf.complex128, tf.as_dtype(np.complex128))
self.assertIs(tf.string, tf.as_dtype(np.object))
self.assertIs(tf.string, tf.as_dtype(np.array(["foo", "bar"]).dtype))
self.assertIs(tf.bool, tf.as_dtype(np.bool))
with self.assertRaises(TypeError):
tf.as_dtype(np.dtype([("f1", np.uint), ("f2", np.int32)]))
示例10: parse_withlabel_function
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int16 [as 別名]
def parse_withlabel_function(example_proto):
time1 = time.time()
features = {
'image': tf.FixedLenFeature([], tf.string),
'image_shape': tf.FixedLenFeature([], tf.string),
'image_label': tf.FixedLenFeature([], tf.string)
}
content = tf.parse_single_example(example_proto, features=features)
content['image_shape'] = tf.decode_raw(content['image_shape'], tf.int32)
content['image_label'] = tf.decode_raw(content['image_label'], tf.int16)
content['image'] = tf.decode_raw(content['image'], tf.int16)
content['image'] = tf.reshape(content['image'], content['image_shape'])
print('parse using time: ', time.time() - time1)
return content['image'], content['image_label']
示例11: _input
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int16 [as 別名]
def _input(self, dtype='float32', shape=None, name=None):
"""Define an input for the recommender.
Parameters
----------
dtype: str
Data type: "float16", "float32", "float64", "int8", "int16", "int32", "int64", "bool", or "string".
shape: list or tuple
Input shape.
name: str
Name of the input.
Returns
-------
Tensorflow placeholder
Defined tensorflow placeholder.
"""
if dtype not in self._str_to_dtype:
raise ValueError
else:
return tf.placeholder(self._str_to_dtype[dtype], shape=shape, name=name)
示例12: test__dtype_to_bytes
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int16 [as 別名]
def test__dtype_to_bytes():
np_tf_dt = [
(np.uint8, tf.uint8, b"uint8"),
(np.uint16, tf.uint16, b"uint16"),
(np.uint32, tf.uint32, b"uint32"),
(np.uint64, tf.uint64, b"uint64"),
(np.int8, tf.int8, b"int8"),
(np.int16, tf.int16, b"int16"),
(np.int32, tf.int32, b"int32"),
(np.int64, tf.int64, b"int64"),
(np.float16, tf.float16, b"float16"),
(np.float32, tf.float32, b"float32"),
(np.float64, tf.float64, b"float64"),
]
for npd, tfd, dt in np_tf_dt:
npd = np.dtype(npd)
assert tfrecord._dtype_to_bytes(npd) == dt
assert tfrecord._dtype_to_bytes(tfd) == dt
assert tfrecord._dtype_to_bytes("float32") == b"float32"
assert tfrecord._dtype_to_bytes("foobar") == b"foobar"
示例13: set_dtype
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int16 [as 別名]
def set_dtype(cls, data_type: str) -> None:
"""
Class method to set the data types
Args:
data_type (str): '16' or '32'
"""
if data_type.endswith('32'):
float_key = 'float32'
int_key = 'int32'
elif data_type.endswith('16'):
float_key = 'float16'
int_key = 'int16'
else:
raise ValueError("Data type not known, choose '16' or '32'")
cls.np_float = DTYPES[float_key]['numpy']
cls.tf_float = DTYPES[float_key]['tf']
cls.np_int = DTYPES[int_key]['numpy']
cls.tf_int = DTYPES[int_key]['tf']
示例14: _convert_string_dtype
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int16 [as 別名]
def _convert_string_dtype(dtype):
if dtype == 'float16':
return tf.float16
if dtype == 'float32':
return tf.float32
elif dtype == 'float64':
return tf.float64
elif dtype == 'int16':
return tf.int16
elif dtype == 'int32':
return tf.int32
elif dtype == 'int64':
return tf.int64
elif dtype == 'uint8':
return tf.int8
elif dtype == 'uint16':
return tf.uint16
else:
raise ValueError('Unsupported dtype:', dtype)
示例15: reduce_mean_support_empty
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int16 [as 別名]
def reduce_mean_support_empty(input, keepdims=False):
return tf.cond(tf.size(input) > 0, lambda: tf.reduce_mean(input, keepdims=keepdims), lambda: tf.zeros_like(input))
# def bit_tensor_list(input):
# assert input.dtype in [tf.uint8, tf.uint16, tf.uint32, tf.uint64], 'unsupported data type, must be uint*'
# num_bits = 0
# if input.dtype == tf.int8:
# num_bits = 8
# elif input.dtype == tf.int16:
# num_bits = 16
# elif input.dtype == tf.uint32:
# num_bits = 32
# elif input.dtype == tf.uint64:
# num_bits = 64
# bit_tensors = []
# for i in range(num_bits):
# current_bit = 1 << i
# current_bit_tensor = tf.bitwise.bitwise_and(input, current_bit) == 1
# bit_tensors.append(current_bit_tensor)
# print(bit_tensors)
# return bit_tensors