本文整理匯總了Python中tensorflow.int方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.int方法的具體用法?Python tensorflow.int怎麽用?Python tensorflow.int使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.int方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: mean
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int [as 別名]
def mean(x, reduce_instance_dims=True, name=None, output_dtype=None):
"""Computes the mean of the values of a `Tensor` over the whole dataset.
Args:
x: A `Tensor` or `SparseTensor`. Its type must be floating point
(float{16|32|64}), or integral ([u]int{8|16|32|64}).
reduce_instance_dims: By default collapses the batch and instance dimensions
to arrive at a single scalar output. If False, only collapses the batch
dimension and outputs a vector of the same shape as the input.
name: (Optional) A name for this operation.
output_dtype: (Optional) If not None, casts the output tensor to this type.
Returns:
A `Tensor` containing the mean. If `x` is floating point, the mean will have
the same type as `x`. If `x` is integral, the output is cast to float32.
Raises:
TypeError: If the type of `x` is not supported.
"""
with tf.compat.v1.name_scope(name, 'mean'):
return _mean_and_var(x, reduce_instance_dims, output_dtype)[0]
示例2: _get_top_k_and_frequency_threshold
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int [as 別名]
def _get_top_k_and_frequency_threshold(top_k, frequency_threshold):
"""Validate `top_k` and `frequency_threshold` values and convert to number."""
if top_k is not None:
top_k = int(top_k)
if top_k < 0:
raise ValueError('top_k must be non-negative, but got: %r' % top_k)
if frequency_threshold is not None:
frequency_threshold = float(frequency_threshold)
if frequency_threshold < 0:
raise ValueError(
'frequency_threshold must be non-negative, but got: %r' %
frequency_threshold)
elif frequency_threshold <= 1:
# Note: this warning is misleading in the context where tokens are ranked
# based on mutual information rather than frequency.
tf.compat.v1.logging.warn(
'frequency_threshold %d <= 1 is a no-op, use None instead.',
frequency_threshold)
return top_k, frequency_threshold
示例3: read_image_paths_labels
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int [as 別名]
def read_image_paths_labels(self):
"""
Reads the paths of the images (from the folders structure)
and the indexes of the labels (using an annotation file)
"""
paths = []
labels = []
if self.mode == 'train':
for i, wnid in enumerate(self.wnids):
img_names = os.listdir(os.path.join(self.cfg.DATA_PATH, self.mode, wnid))
for img_name in img_names:
paths.append(os.path.join(self.cfg.DATA_PATH, self.mode, wnid, img_name))
labels.append(i)
# shuffling the images names and relative labels
d = zip(paths, labels)
random.shuffle(d)
paths, labels = zip(*d)
else:
with open(os.path.join(self.cfg.DATA_PATH, 'data', 'ILSVRC2012_validation_ground_truth.txt')) as f:
groundtruths = f.readlines()
groundtruths = [int(x.strip()) for x in groundtruths]
images_names = sorted(os.listdir(os.path.join(self.cfg.DATA_PATH, 'ILSVRC2012_img_val')))
for image_name, gt in zip(images_names, groundtruths):
paths.append(os.path.join(self.cfg.DATA_PATH, 'ILSVRC2012_img_val', image_name))
labels.append(gt)
self.dataset_size = len(paths)
return tf.constant(paths), tf.constant(labels)
示例4: sum
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int [as 別名]
def sum(x, reduce_instance_dims=True, name=None): # pylint: disable=redefined-builtin
"""Computes the sum of the values of a `Tensor` over the whole dataset.
Args:
x: A `Tensor` or `SparseTensor`. Its type must be floating point
(float{16|32|64}),integral (int{8|16|32|64}), or
unsigned integral (uint{8|16})
reduce_instance_dims: By default collapses the batch and instance dimensions
to arrive at a single scalar output. If False, only collapses the batch
dimension and outputs a vector of the same shape as the input.
name: (Optional) A name for this operation.
Returns:
A `Tensor` containing the sum. If `x` is float32 or float64, the sum will
have the same type as `x`. If `x` is float16, the output is cast to float32.
If `x` is integral, the output is cast to [u]int64. If `x` is sparse and
reduce_inst_dims is False will return 0 in place where column has no values
across batches.
Raises:
TypeError: If the type of `x` is not supported.
"""
with tf.compat.v1.name_scope(name, 'sum'):
if reduce_instance_dims:
if isinstance(x, tf.SparseTensor):
x = x.values
x = tf.reduce_sum(input_tensor=x)
elif isinstance(x, tf.SparseTensor):
if x.dtype == tf.uint8 or x.dtype == tf.uint16:
x = tf.cast(x, tf.int64)
elif x.dtype == tf.uint32 or x.dtype == tf.uint64:
TypeError('Data type %r is not supported' % x.dtype)
x = tf.sparse.reduce_sum(x, axis=0)
else:
x = tf.reduce_sum(input_tensor=x, axis=0)
output_dtype, sum_fn = _sum_combine_fn_and_dtype(x.dtype)
return _numeric_combine([x], sum_fn, reduce_instance_dims,
[output_dtype])[0]
示例5: count_per_key
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int [as 別名]
def count_per_key(key, key_vocabulary_filename=None, name=None):
"""Computes the count of each element of a `Tensor`.
Args:
key: A Tensor or `SparseTensor` of dtype tf.string or tf.int.
key_vocabulary_filename: (Optional) The file name for the key-output mapping
file. If None and key are provided, this combiner assumes the keys fit in
memory and will not store the result in a file. If empty string, a file
name will be chosen based on the current scope. If not an empty string,
should be unique within a given preprocessing function.
name: (Optional) A name for this operation.
Returns:
Either:
(A) Two `Tensor`s: one the key vocab with dtype of input;
the other the count for each key, dtype tf.int64. (if
key_vocabulary_filename is None).
(B) The filename where the key-value mapping is stored (if
key_vocabulary_filename is not None).
Raises:
TypeError: If the type of `x` is not supported.
"""
with tf.compat.v1.name_scope(name, 'count_per_key'):
key_dtype = key.dtype
batch_keys, batch_counts = tf_utils.reduce_batch_count_or_sum_per_key(
x=None, key=key, reduce_instance_dims=True)
output_dtype, sum_fn = _sum_combine_fn_and_dtype(tf.int64)
numeric_combine_result = _numeric_combine(
[batch_counts], sum_fn, True, [output_dtype], key=batch_keys,
key_vocabulary_filename=key_vocabulary_filename)
if key_vocabulary_filename is not None:
return numeric_combine_result
keys, counts = numeric_combine_result
if key_dtype is not tf.string:
keys = tf.strings.to_number(keys, key_dtype)
return keys, counts
示例6: calculate_recommended_min_diff_from_avg
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int [as 別名]
def calculate_recommended_min_diff_from_avg(dataset_size):
"""Calculates a recommended min_diff_from_avg argument to tft.vocabulary.
Computes a default min_diff_from_average parameter based on the size of the
dataset. The MI (or AMI) of a token x label will be pushed to zero whenever
the difference between the observed and the expected (average) cooccurrence
with the label is < min_diff_from_average. This can be thought of as a
regularization parameter for mutual information based vocabularies.
Args:
dataset_size: The number of recods in the dataset. The bigger the dataset,
the higher the min_diff_from_average will be.
Returns:
An integer that is recomended to use as the min_diff_from_avg parameter of
`vocabulary`.
"""
# The minimum and maximum min_diff_from_avg parameter to use.
min_value, max_value = 2, 25
# Heuristics for a "small" and "large" dataset. The selected parameter will
# be between min_value and max_value depending on where the dataset_size falls
# relative to these values.
small_dataset_size, large_dataset_size = 10000, 1000000
return int(
builtin_min(
max_value,
builtin_max(min_value, (dataset_size - small_dataset_size) /
(large_dataset_size - small_dataset_size) *
(max_value - min_value) + min_value)))
示例7: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int [as 別名]
def __init__(self,
num_quantiles,
epsilon,
bucket_numpy_dtype,
always_return_num_quantiles=False,
has_weights=False,
output_shape=None,
include_max_and_min=False,
feature_shape=None):
self._num_quantiles = num_quantiles
self._epsilon = epsilon
self._bucket_numpy_dtype = bucket_numpy_dtype
self._always_return_num_quantiles = always_return_num_quantiles
self._has_weights = has_weights
self._output_shape = output_shape
self._include_max_and_min = include_max_and_min
if feature_shape is None:
self._feature_shape = []
elif isinstance(feature_shape, int):
self._feature_shape = [feature_shape]
else:
self._feature_shape = feature_shape
self._num_features = int(np.prod(self._feature_shape, dtype=np.int64))
if not self._always_return_num_quantiles and self._num_features > 1:
raise NotImplementedError(
'Elementwise quantiles requires same boundary count.')
self._tf_config = None # Assigned in initialize_local_state().
self._graph_state = None # Lazily created in _get_graph_state().
示例8: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int [as 別名]
def __init__(self, embeddings, cell, batch_size, start_token, end_token,
beam_size=5, div_gamma=1, div_prob=0):
"""Initializes parameters for Beam Search
Args:
embeddings: (tf.Variable) shape = (vocab_size, embedding_size)
cell: instance of Cell that defines a step function, etc.
batch_size: tf.int extracted with tf.Shape or int
start_token: id of start token
end_token: int, id of the end token
beam_size: int, size of the beam
div_gamma: float, amount of penalty to add to beam hypo for
diversity. Coefficient of penaly will be log(div_gamma).
Use value between 0 and 1. (1 means no penalty)
div_prob: only apply div penalty with probability div_prob.
div_prob = 0. means never apply penalty
"""
self._embeddings = embeddings
self._cell = cell
self._dim_embeddings = embeddings.shape[-1].value
self._batch_size = batch_size
self._start_token = start_token
self._beam_size = beam_size
self._end_token = end_token
self._vocab_size = embeddings.shape[0].value
self._div_gamma = float(div_gamma)
self._div_prob = float(div_prob)
示例9: mask_probs
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int [as 別名]
def mask_probs(probs, end_token, finished):
"""
Args:
probs: tensor of shape [batch_size, beam_size, vocab_size]
end_token: (int)
finished: tensor of shape [batch_size, beam_size], dtype = tf.bool
"""
# one hot of shape [vocab_size]
vocab_size = probs.shape[-1].value
one_hot = tf.one_hot(end_token, vocab_size, on_value=0.,
off_value=probs.dtype.min, dtype=probs.dtype)
# expand dims of shape [batch_size, beam_size, 1]
finished = tf.expand_dims(tf.cast(finished, probs.dtype), axis=-1)
return (1. - finished) * probs + finished * one_hot
示例10: input_parser
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int [as 別名]
def input_parser(self, img_path, label):
"""
Parse a single example
Reads the image tensor (and preprocess it) given its path and produce a one-hot label given an integer index
Args:
img_path: a TF string tensor representing the path of the image
label: a TF int tensor representing an index in the one-hot vector
Returns:
a preprocessed tf.float32 tensor of shape (heigth, width, channels)
a tf.int one-hot tensor
"""
one_hot = tf.one_hot(label, self.cfg.NUM_CLASSES)
# image reading
image = self.read_image(img_path)
image_shape = tf.shape(image)
# resize of the image (setting largest border to 256px)
new_h = tf.cond(image_shape[0] < image_shape[1],
lambda: tf.div(tf.multiply(256, image_shape[1]), image_shape[0]),
lambda: 256)
new_w = tf.cond(image_shape[0] < image_shape[1],
lambda: 256,
lambda: tf.div(tf.multiply(256, image_shape[0]), image_shape[1]))
image = tf.image.resize_images(image, size=[new_h, new_w])
if self.mode == 'test':
# take random crops for testing
patches = []
for k in range(self.cfg.K_PATCHES):
patches.append(tf.random_crop(image, size=[self.cfg.IMG_SHAPE[0], self.cfg.IMG_SHAPE[1], self.cfg.IMG_SHAPE[2]]))
image = patches
else:
image = tf.random_crop(image, size=[self.cfg.IMG_SHAPE[0], self.cfg.IMG_SHAPE[1], self.cfg.IMG_SHAPE[2]])
if self.mode == 'train':
# some easy data augmentation
image = tf.image.random_flip_left_right(image)
image = tf.image.random_contrast(image, lower=0.8, upper=1.2)
# normalization
image = tf.to_float(image)
image = tf.subtract(image, self.cfg.IMAGENET_MEAN)
return image, one_hot
示例11: bucketize_per_key
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int [as 別名]
def bucketize_per_key(x, key, num_buckets, epsilon=None, name=None):
"""Returns a bucketized column, with a bucket index assigned to each input.
Args:
x: A numeric input `Tensor` or `SparseTensor` with rank 1, whose values
should be mapped to buckets. `SparseTensor`s will have their non-missing
values mapped and missing values left as missing.
key: A Tensor or `SparseTensor` with the same shape as `x` and dtype
tf.string. If `x` is a `SparseTensor`, `key` must exactly match `x` in
everything except values, i.e. indices and dense_shape must be identical.
num_buckets: Values in the input `x` are divided into approximately
equal-sized buckets, where the number of buckets is num_buckets.
epsilon: (Optional) see `bucketize`
name: (Optional) A name for this operation.
Returns:
A `Tensor` of the same shape as `x`, with each element in the
returned tensor representing the bucketized value. Bucketized value is
in the range [0, actual_num_buckets).
Raises:
ValueError: If value of num_buckets is not > 1.
"""
with tf.compat.v1.name_scope(name, 'bucketize_per_key'):
if not isinstance(num_buckets, int):
raise TypeError(
'num_buckets must be an int, got {}'.format(type(num_buckets)))
if num_buckets < 1:
raise ValueError('Invalid num_buckets {}'.format(num_buckets))
if epsilon is None:
# See explanation in args documentation for epsilon.
epsilon = min(1.0 / num_buckets, 0.01)
(key_vocab, bucket_boundaries, scale_factor_per_key, shift_per_key,
actual_num_buckets) = (
analyzers._quantiles_per_key( # pylint: disable=protected-access
x.values if isinstance(x, tf.SparseTensor) else x,
key.values if isinstance(key, tf.SparseTensor) else key,
num_buckets, epsilon))
return _apply_buckets_with_keys(x, key, key_vocab, bucket_boundaries,
scale_factor_per_key, shift_per_key,
actual_num_buckets)
示例12: histogram
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import int [as 別名]
def histogram(x, boundaries=None, categorical=False, name=None):
"""Computes a histogram over x, given the bin boundaries or bin count.
Ex (1):
counts, boundaries = histogram([0, 1, 0, 1, 0, 3, 0, 1], range(5))
counts: [4, 3, 0, 1, 0]
boundaries: [0, 1, 2, 3, 4]
Ex (2):
Can be used to compute class weights.
counts, classes = histogram([0, 1, 0, 1, 0, 3, 0, 1], categorical=True)
probabilities = counts / tf.reduce_sum(counts)
class_weights = dict(map(lambda (a, b): (a.numpy(), 1.0 / b.numpy()),
zip(classes, probabilities)))
Args:
x: A `Tensor` or `SparseTensor`.
boundaries: (Optional) A `Tensor` or `int` used to build the histogram;
ignored if `categorical` is True. If possible, provide boundaries as
multiple sorted values. Default to 10 intervals over the 0-1 range,
or find the min/max if an int is provided (not recommended because
multi-phase analysis is inefficient).
categorical: (Optional) A `bool` that treats `x` as discrete values if true.
name: (Optional) A name for this operation.
Returns:
counts: The histogram, as counts per bin.
boundaries: A `Tensor` used to build the histogram representing boundaries.
"""
with tf.compat.v1.name_scope(name, 'histogram'):
# We need to flatten because BoostedTreesBucketize expects a rank-1 input
x = x.values if isinstance(x, tf.SparseTensor) else tf.reshape(x, [-1])
if categorical:
x_dtype = x.dtype
x = x if x_dtype == tf.string else tf.strings.as_string(x)
elements, counts = count_per_key(x)
if x_dtype != elements.dtype:
elements = tf.strings.to_number(elements, tf.int64)
return counts, elements
if boundaries is None:
boundaries = tf.range(11, dtype=tf.float32) / 10.0
elif isinstance(boundaries, int) or tf.rank(boundaries) == 0:
min_value, max_value = _min_and_max(x, True)
boundaries = tf.linspace(tf.cast(min_value, tf.float32),
tf.cast(max_value, tf.float32),
boundaries)
# Shift the boundaries slightly to account for floating point errors,
# and due to the fact that the rightmost boundary is essentially ignored.
boundaries = tf.expand_dims(tf.cast(boundaries, tf.float32), 0) - 0.0001
bucket_indices = tf_utils.apply_bucketize_op(tf.cast(x, tf.float32),
boundaries,
remove_leftmost_boundary=True)
bucket_vocab, counts = count_per_key(tf.strings.as_string(bucket_indices))
counts = tf_utils.reorder_histogram(bucket_vocab, counts,
tf.size(boundaries) - 1)
return counts, boundaries