當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.initialize_variables方法代碼示例

本文整理匯總了Python中tensorflow.initialize_variables方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.initialize_variables方法的具體用法?Python tensorflow.initialize_variables怎麽用?Python tensorflow.initialize_variables使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.initialize_variables方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: initialize_interdependent_variables

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import initialize_variables [as 別名]
def initialize_interdependent_variables(session, vars_list, feed_dict):
    """Initialize a list of variables one at a time, which is useful if
    initialization of some variables depends on initialization of the others.
    """
    vars_left = vars_list
    while len(vars_left) > 0:
        new_vars_left = []
        for v in vars_left:
            try:
                # If using an older version of TensorFlow, uncomment the line
                # below and comment out the line after it.
		#session.run(tf.initialize_variables([v]), feed_dict)
                session.run(tf.variables_initializer([v]), feed_dict)
            except tf.errors.FailedPreconditionError:
                new_vars_left.append(v)
        if len(new_vars_left) >= len(vars_left):
            # This can happend if the variables all depend on each other, or more likely if there's
            # another variable outside of the list, that still needs to be initialized. This could be
            # detected here, but life's finite.
            raise Exception("Cycle in variable dependencies, or extenrnal precondition unsatisfied.")
        else:
            vars_left = new_vars_left 
開發者ID:xuwd11,項目名稱:cs294-112_hws,代碼行數:24,代碼來源:dqn_utils.py

示例2: test_scipy_lbfgsb

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import initialize_variables [as 別名]
def test_scipy_lbfgsb():
    sess = tf.Session()
    x = tf.Variable(np.float64(2), name='x')
    sess.run(tf.initialize_variables([x]))
    optimizer = ScipyLBFGSBOptimizer(verbose=True, session=sess)
    # With gradient
    results = optimizer.minimize([x], x**2, [2 * x])
    assert results.success
    # Without gradient
    results = optimizer.minimize([x], x**2)
    assert results.success
    # Test callback
    def callback(xs):
        pass
    optimizer = ScipyLBFGSBOptimizer(verbose=True, session=sess, callback=callback)
    assert optimizer.minimize([x], x**2).success
    @raises(ValueError)
    def test_illegal_parameter_as_variable1():
        optimizer.minimize([42], x**2)
    test_illegal_parameter_as_variable1()
    @raises(ValueError)
    def test_illegal_parameter_as_variable2():
        optimizer.minimize(42, x**2)
    test_illegal_parameter_as_variable2() 
開發者ID:tensorprob,項目名稱:tensorprob,代碼行數:26,代碼來源:test_optimizer.py

示例3: test_migrad

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import initialize_variables [as 別名]
def test_migrad():
    sess = tf.Session()
    x = tf.Variable(np.float64(2), name='x')
    sess.run(tf.initialize_variables([x]))
    optimizer = MigradOptimizer(session=sess)
    # With gradient
    results = optimizer.minimize([x], x**2, [2 * x])
    assert results.success
    # Without gradient
    results = optimizer.minimize([x], x**2)
    assert results.success
    @raises(ValueError)
    def test_illegal_parameter_as_variable1():
        optimizer.minimize([42], x**2)
    test_illegal_parameter_as_variable1()
    @raises(ValueError)
    def test_illegal_parameter_as_variable2():
        optimizer.minimize(42, x**2)
    test_illegal_parameter_as_variable2() 
開發者ID:tensorprob,項目名稱:tensorprob,代碼行數:21,代碼來源:test_optimizer.py

示例4: typeBasedColdEmbExp

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import initialize_variables [as 別名]
def typeBasedColdEmbExp(self, ckptName="FigerModel-20001"):
        ''' Train cold embeddings using wiki desc loss
        '''
        saver = tf.train.Saver(var_list=tf.all_variables())

        print("Loading Model ... ")
        if ckptName == None:
            print("Given CKPT Name")
            sys.exit()
        else:
            load_status = self.fm.loadSpecificCKPT(
              saver=saver, checkpoint_dir=self.fm.checkpoint_dir,
              ckptName=ckptName, attrs=self.fm._attrs)
        if not load_status:
            print("No model to load. Exiting")
            sys.exit(0)

        self._makeDescLossGraph()
        self.fm.sess.run(tf.initialize_variables(self.allcoldvars))
        self._trainColdEmbFromTypes(epochsToTrain=5)

        self.runEval()

    ############################################################################## 
開發者ID:nitishgupta,項目名稱:neural-el,代碼行數:26,代碼來源:coldStart.py

示例5: typeAndWikiDescBasedColdEmbExp

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import initialize_variables [as 別名]
def typeAndWikiDescBasedColdEmbExp(self, ckptName="FigerModel-20001"):
        ''' Train cold embeddings using wiki desc loss
        '''
        saver = tf.train.Saver(var_list=tf.all_variables())

        print("Loading Model ... ")
        if ckptName == None:
            print("Given CKPT Name")
            sys.exit()
        else:
            load_status = self.fm.loadSpecificCKPT(
              saver=saver, checkpoint_dir=self.fm.checkpoint_dir,
              ckptName=ckptName, attrs=self.fm._attrs)
        if not load_status:
            print("No model to load. Exiting")
            sys.exit(0)

        self._makeDescLossGraph()
        self.fm.sess.run(tf.initialize_variables(self.allcoldvars))
        self._trainColdEmbFromTypesAndDesc(epochsToTrain=5)

        self.runEval()

    # EVALUATION FOR COLD START WHEN INITIALIZING COLD EMB FROM WIKI DESC ENCODING 
開發者ID:nitishgupta,項目名稱:neural-el,代碼行數:26,代碼來源:coldStart.py

示例6: testInitializeFromValue

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import initialize_variables [as 別名]
def testInitializeFromValue(self):
    with self.test_session() as sess:
      init = tf.constant(0.1)
      w = tf.get_variable("v", initializer=init)
      sess.run(tf.initialize_variables([w]))
      self.assertAllClose(w.eval(), 0.1)

      with self.assertRaisesRegexp(ValueError, "shape"):
        # We disallow explicit shape specification when initializer is constant.
        tf.get_variable("u", [1], initializer=init)

      with tf.variable_scope("foo", initializer=init):
        # Constant initializer can be passed through scopes if needed.
        v = tf.get_variable("v")
        sess.run(tf.initialize_variables([v]))
        self.assertAllClose(v.eval(), 0.1)

      # Check that non-float32 initializer creates a non-float32 variable.
      init = tf.constant(1, dtype=tf.int32)
      t = tf.get_variable("t", initializer=init)
      self.assertEqual(t.dtype.base_dtype, tf.int32)

      # Raise error if `initializer` dtype and `dtype` are not identical.
      with self.assertRaisesRegexp(ValueError, "don't match"):
        tf.get_variable("s", initializer=init, dtype=tf.float64) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:27,代碼來源:variable_scope_test.py

示例7: _test_streaming_sparse_precision_at_top_k

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import initialize_variables [as 別名]
def _test_streaming_sparse_precision_at_top_k(self,
                                                top_k_predictions,
                                                labels,
                                                expected,
                                                class_id=None,
                                                weights=None):
    with tf.Graph().as_default() as g, self.test_session(g):
      if weights is not None:
        weights = tf.constant(weights, tf.float32)
      metric, update = metrics.streaming_sparse_precision_at_top_k(
          top_k_predictions=tf.constant(top_k_predictions, tf.int32),
          labels=labels, class_id=class_id, weights=weights)

      # Fails without initialized vars.
      self.assertRaises(tf.OpError, metric.eval)
      self.assertRaises(tf.OpError, update.eval)
      tf.initialize_variables(tf.local_variables()).run()

      # Run per-step op and assert expected values.
      if math.isnan(expected):
        self.assertTrue(math.isnan(update.eval()))
        self.assertTrue(math.isnan(metric.eval()))
      else:
        self.assertEqual(expected, update.eval())
        self.assertEqual(expected, metric.eval()) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:27,代碼來源:metric_ops_test.py

示例8: _test_streaming_sparse_average_precision_at_k

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import initialize_variables [as 別名]
def _test_streaming_sparse_average_precision_at_k(
      self, predictions, labels, k, expected, weights=None):
    with tf.Graph().as_default() as g, self.test_session(g):
      if weights is not None:
        weights = tf.constant(weights, tf.float32)
      predictions = tf.constant(predictions, tf.float32)
      metric, update = metrics.streaming_sparse_average_precision_at_k(
          predictions, labels, k, weights=weights)

      # Fails without initialized vars.
      self.assertRaises(tf.OpError, metric.eval)
      self.assertRaises(tf.OpError, update.eval)
      local_variables = tf.local_variables()
      tf.initialize_variables(local_variables).run()

      # Run per-step op and assert expected values.
      if math.isnan(expected):
        _assert_nan(self, update.eval())
        _assert_nan(self, metric.eval())
      else:
        self.assertAlmostEqual(expected, update.eval())
        self.assertAlmostEqual(expected, metric.eval()) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:24,代碼來源:metric_ops_test.py

示例9: load_params

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import initialize_variables [as 別名]
def load_params(sess, filename, checkpoint, init_all = True):
    params = tf.trainable_variables()
    filename = filename + '_' + str(checkpoint)
    f = open(filename + '.pkl', 'r')
    param_dict = cPickle.load(f)
    print 'param loaded', len(param_dict)
    f.close()
    ops = []
    for v in params:
        if v.name in param_dict.keys():
            ops.append(tf.assign(v, param_dict[v.name]))
    sess.run(ops)
    # init uninitialised params
    if init_all:
        all_var = tf.all_variables()
        var = [v for v in all_var if v not in params]
        sess.run(tf.initialize_variables(var))
    print 'loaded parameters from ' + filename + '.pkl' 
開發者ID:nvcuong,項目名稱:variational-continual-learning,代碼行數:20,代碼來源:utils.py

示例10: init_and_reload

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import initialize_variables [as 別名]
def init_and_reload(self):

         ##########
         # this function is only used for the gan training with reload
         ##########

         params = [param for param in tf.trainable_variables() if 'generate' in param.name]
         #params = [param for param in tf.all_variables()]
         if not self.sess.run(tf.is_variable_initialized(params[0])):
            #init_op = tf.initialize_variables(params)
            init_op = tf.global_variables_initializer()  ## this is important here to initialize_all_variables()
            self.sess.run(init_op)

         saver = tf.train.Saver(params)
         self.saver=saver
         
         if self.gen_reload:                                     ##here must be true
           print('reloading params from %s '% self.saveto)
           self.saver.restore(self.sess, './'+self.saveto)
           print('reloading params done')
         else:
           print('error, reload must be true!!') 
開發者ID:ZhenYangIACAS,項目名稱:NMT_GAN,代碼行數:24,代碼來源:nmt_generator.py

示例11: init

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import initialize_variables [as 別名]
def init(self):
    self._sess.run(tf.initialize_variables(self._var_list))
    self._init = True 
開發者ID:iwyoo,項目名稱:ELM-tensorflow,代碼行數:5,代碼來源:model.py

示例12: _initialize_variables

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import initialize_variables [as 別名]
def _initialize_variables(self):
        uninitialized_var_names = [bytes.decode(var) for var in self._sess.run(tf.report_uninitialized_variables())]
        uninitialized_vars = [var for var in tf.global_variables() if var.name.split(':')[0] in uninitialized_var_names]
        self._sess.run(tf.initialize_variables(uninitialized_vars)) 
開發者ID:FederatedAI,項目名稱:FATE,代碼行數:6,代碼來源:nn_model.py

示例13: guarantee_initialized_variables

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import initialize_variables [as 別名]
def guarantee_initialized_variables(self, session, list_of_variables=None):
        if list_of_variables is None:
            list_of_variables = tf.all_variables()
        uninitialized_variables = list(tf.get_variable(name) for name in
                                       session.run(tf.report_uninitialized_variables(list_of_variables)))
        session.run(tf.initialize_variables(uninitialized_variables))
        return uninitialized_variables 
開發者ID:igemsoftware2017,項目名稱:AiGEM_TeamHeidelberg2017,代碼行數:9,代碼來源:DeeProtein.py

示例14: __setitem__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import initialize_variables [as 別名]
def __setitem__(self, index, value):
    for use_gpu in [False, True]:
      with self.test.test_session(use_gpu=use_gpu) as sess:
        var = tf.Variable(self.x)
        sess.run(tf.initialize_variables([var]))
        val = sess.run(var[index].assign(
            tf.constant(
                value, dtype=self.tensor_type)))
        valnp = np.copy(self.x_np)
        valnp[index] = np.array(value)
        self.test.assertAllEqual(val, valnp) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:13,代碼來源:array_ops_test.py

示例15: testVarScopeInitializer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import initialize_variables [as 別名]
def testVarScopeInitializer(self):
    with self.test_session() as sess:
      init = tf.constant_initializer(0.3)
      with tf.variable_scope("tower") as tower:
        with tf.variable_scope("foo", initializer=init):
          v = tf.get_variable("v", [])
          sess.run(tf.initialize_variables([v]))
          self.assertAllClose(v.eval(), 0.3)
        with tf.variable_scope(tower, initializer=init):
          w = tf.get_variable("w", [])
          sess.run(tf.initialize_variables([w]))
          self.assertAllClose(w.eval(), 0.3) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:14,代碼來源:variable_scope_test.py


注:本文中的tensorflow.initialize_variables方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。