當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.initialize_all_variables方法代碼示例

本文整理匯總了Python中tensorflow.initialize_all_variables方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.initialize_all_variables方法的具體用法?Python tensorflow.initialize_all_variables怎麽用?Python tensorflow.initialize_all_variables使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.initialize_all_variables方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: restore_best_model

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import initialize_all_variables [as 別名]
def restore_best_model(self):
    """Load bestmodel file from eval directory, add variables for adagrad, and save to train directory"""
    tf.logging.info("Restoring bestmodel for training...")

    # Initialize all vars in the model
    sess = tf.Session(config=util.get_config())
    print("Initializing all variables...")
    sess.run(tf.initialize_all_variables())

    # Restore the best model from eval dir
    saver = tf.train.Saver([v for v in tf.all_variables() if "Adagrad" not in v.name])
    print("Restoring all non-adagrad variables from best model in eval dir...")
    curr_ckpt = util.load_ckpt(saver, sess, "eval")
    print("Restored %s." % curr_ckpt)

    # Save this model to train dir and quit
    new_model_name = curr_ckpt.split("/")[-1].replace("bestmodel", "model")
    new_fname = os.path.join(FLAGS.log_root, "train", new_model_name)
    print("Saving model to %s..." % (new_fname))
    new_saver = tf.train.Saver() # this saver saves all variables that now exist, including Adagrad variables
    new_saver.save(sess, new_fname)
    print("Saved.")
    exit() 
開發者ID:yaserkl,項目名稱:TransferRL,代碼行數:25,代碼來源:run_summarization.py

示例2: test_lm

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import initialize_all_variables [as 別名]
def test_lm(self):
        hps = get_test_hparams()

        with tf.variable_scope("model"):
            model = LM(hps)

        with self.test_session() as sess:
            tf.initialize_all_variables().run()
            tf.initialize_local_variables().run()

            loss = 1e5
            for i in range(50):
                x, y, w = simple_data_generator(hps.batch_size, hps.num_steps)
                loss, _ = sess.run([model.loss, model.train_op], {model.x: x, model.y: y, model.w: w})
                print("%d: %.3f %.3f" % (i, loss, np.exp(loss)))
                if np.isnan(loss):
                    print("NaN detected")
                    break

            self.assertLess(loss, 1.0) 
開發者ID:rafaljozefowicz,項目名稱:lm,代碼行數:22,代碼來源:language_model_test.py

示例3: build_model

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import initialize_all_variables [as 別名]
def build_model(self, sess):
        self.init_opt()
        sess.run(tf.initialize_all_variables())

        if len(self.model_path) > 0:
            print("Reading model parameters from %s" % self.model_path)
            restore_vars = tf.all_variables()
            # all_vars = tf.all_variables()
            # restore_vars = [var for var in all_vars if
            #                 var.name.startswith('g_') or
            #                 var.name.startswith('d_')]
            saver = tf.train.Saver(restore_vars)
            saver.restore(sess, self.model_path)

            istart = self.model_path.rfind('_') + 1
            iend = self.model_path.rfind('.')
            counter = self.model_path[istart:iend]
            counter = int(counter)
        else:
            print("Created model with fresh parameters.")
            counter = 0
        return counter 
開發者ID:hanzhanggit,項目名稱:StackGAN,代碼行數:24,代碼來源:trainer.py

示例4: build_model

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import initialize_all_variables [as 別名]
def build_model(self, sess):
        self.init_opt()

        sess.run(tf.initialize_all_variables())
        if len(self.model_path) > 0:
            print("Reading model parameters from %s" % self.model_path)
            all_vars = tf.trainable_variables()
            # all_vars = tf.all_variables()
            restore_vars = []
            for var in all_vars:
                if var.name.startswith('g_') or var.name.startswith('d_'):
                    restore_vars.append(var)
                    # print(var.name)
            saver = tf.train.Saver(restore_vars)
            saver.restore(sess, self.model_path)

            istart = self.model_path.rfind('_') + 1
            iend = self.model_path.rfind('.')
            counter = self.model_path[istart:iend]
            counter = int(counter)
        else:
            print("Created model with fresh parameters.")
            counter = 0
        return counter 
開發者ID:hanzhanggit,項目名稱:StackGAN,代碼行數:26,代碼來源:trainer.py

示例5: export

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import initialize_all_variables [as 別名]
def export(self, last_checkpoint, output_dir):
    """Builds a prediction graph and xports the model.

    Args:
      last_checkpoint: The latest checkpoint from training.
      output_dir: Path to the folder to be used to output the model.
    """
    logging.info('Exporting prediction graph to %s', output_dir)
    with tf.Session(graph=tf.Graph()) as sess:
      # Build and save prediction meta graph and trained variable values.
      self.build_prediction_graph()
      # Remove this if once Tensorflow 0.12 is standard.
      try:
        init_op = tf.global_variables_initializer()
      except AttributeError:
        init_op = tf.initialize_all_variables()
      sess.run(init_op)
      trained_saver = tf.train.Saver()
      trained_saver.restore(sess, last_checkpoint)
      saver = tf.train.Saver()
      saver.export_meta_graph(filename=os.path.join(output_dir, 'export.meta'))
      saver.save(
          sess, os.path.join(output_dir, 'export'), write_meta_graph=False) 
開發者ID:GoogleCloudPlatform,項目名稱:cloudml-samples,代碼行數:25,代碼來源:model.py

示例6: train

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import initialize_all_variables [as 別名]
def train(self):

	self.train_op = self.optim.minimize(self.loss, global_step=self.global_step)
        self.writer = tf.train.SummaryWriter("./logs/D_pretrained", self.sess.graph)
	self.summary_op = tf.merge_all_summaries()
        tf.initialize_all_variables().run()
        self.saver = tf.train.Saver(var_list=self.D_params_dict, max_to_keep=self.max_to_keep)
        count = 0
	for idx in range(self.max_iter//3000):
            self.save(self.checkpoint_dir, count)
            self.evaluate('test', count)
	    self.evaluate('train', count)
            for k in tqdm(range(3000)):
		right_images, right_text, _ = self.dataset.sequential_sample(self.batch_size)
		right_length = np.sum((right_text!=self.NOT)+0, 1)
		fake_images, fake_text, _ = self.negative_dataset.sequential_sample(self.batch_size)
		fake_length = np.sum((fake_text!=self.NOT)+0, 1)
		wrong_text = self.dataset.get_wrong_text(self.batch_size)
		wrong_length = np.sum((wrong_text!=self.NOT)+0, 1)
		feed_dict = {self.right_images:right_images, self.right_text:right_text, self.right_length:right_length, 
				self.fake_images:fake_images, self.fake_text:fake_text, self.fake_length:fake_length, 
				self.wrong_images:right_images, self.wrong_text:wrong_text, self.wrong_length:wrong_length}
		_, loss, summary_str = self.sess.run([self.train_op, self.loss, self.summary_op], feed_dict)
		self.writer.add_summary(summary_str, count)
                count += 1 
開發者ID:tsenghungchen,項目名稱:show-adapt-and-tell,代碼行數:27,代碼來源:pretrain_LSTM_D.py

示例7: main

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import initialize_all_variables [as 別名]
def main():
    sys.stdout.write("start ptb")
    raw_data = reader.ptb_raw_data("")
    train_data, valid_data, test_data, word_to_id = raw_data

    with tf.Graph().as_default(), tf.Session() as session:
        initializer = tf.random_uniform_initializer(-0.04, 0.04)
        with tf.variable_scope("model", reuse=None, initializer=initializer):
            model = PTBModel()

        saver = tf.train.Saver()
        tf.initialize_all_variables().run()
        model.train_writer = tf.train.SummaryWriter('./train', graph=session.graph)

        for i in range(13):
            sys.stdout.write("Epoch: %d\n" % (i + 1))
            train_perplexity = model.train(session, train_data)
            sys.stdout.write("Epoch: %d Train Perplexity: %.3f\n" % (i + 1, train_perplexity))
            valid_perplexity = model.evaluate(session, valid_data)
            sys.stdout.write("Epoch: %d Valid Perplexity: %.3f\n" % (i + 1, valid_perplexity))
            test_perplexity = model.evaluate(session, test_data)
            sys.stdout.write("Epoch: %d Test Perplexity: %.3f\n" % (i + 1, test_perplexity))

        # model.predict(session, test_data, word_to_id)
        saver.save(session, 'model.ckpt') 
開發者ID:katsugeneration,項目名稱:tensor-fsmn,代碼行數:27,代碼來源:ptb.py

示例8: SplitApplyMerge

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import initialize_all_variables [as 別名]
def SplitApplyMerge(self):
    # Repeatability.  SGD has a tendency to jump around, even here.
    tf.set_random_seed(1)

    # Use sampling to train REINFORCE
    with st.value_type(st.SampleAndReshapeValue(n=1)):
      (route_selection,
        routing_loss,
        final_loss) = build_split_apply_merge_model()

    sgd = tf.train.GradientDescentOptimizer(1.0).minimize(final_loss)

    tf.initialize_all_variables().run()

    for i in range(10):
        # Run loss and inference step.  This toy problem converges VERY quickly.
      (routing_loss_v, final_loss_v, route_selection_v, _) = sess.run(
          [routing_loss, final_loss, tf.identity(route_selection), sgd])
      print(
          "Iteration %d, routing loss: %s, final_loss: %s, "
          "route selection: %s"
          % (i, routing_loss_v, final_loss_v, route_selection_v)) 
開發者ID:camrongodbout,項目名稱:TensorFlow-in-a-Nutshell,代碼行數:24,代碼來源:reinforce.py

示例9: main

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import initialize_all_variables [as 別名]
def main(argv=None):
    X_train, Y_train, X_test, Y_test = gtsrb(FLAGS.train_dataset, FLAGS.test_dataset, labels_filename=FLAGS.labels)
    print 'Loaded GTSRB data'

    X_train = np.asarray(map(lambda x: pre_process_image(x), X_train.astype(np.uint8)),dtype=np.float32)
    X_test = np.asarray(map(lambda x: pre_process_image(x), X_test.astype(np.uint8)),dtype=np.float32)
    global total_iterations 
    global best_validation_accuracy
    global last_improvement
    global best_test_accuracy 
    
    global val_acc_list 
    global batch_acc_list 
    global test_acc_list


    with tf.Session() as sess:
        model = YadavModel()
	sess.run(tf.initialize_all_variables())
        #X_train, Y_train = gen_transformed_data(X_train,Y_train,43,10,30,5,5,1)
	print(X_train.shape)
	print(Y_train.shape)
	optimize(sess, model, X_train, Y_train, X_test, Y_test, 10000, 128) 
開發者ID:evtimovi,項目名稱:robust_physical_perturbations,代碼行數:25,代碼來源:train_yadav.py

示例10: load_model

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import initialize_all_variables [as 別名]
def load_model(self, model_dir):
        mappings_path = os.path.join(model_dir, 'mappings.pkl')
        parameters_path = os.path.join(model_dir, 'parameters.pkl')
        item2id, id2item, tag2id, id2tag, word2id, id2word = \
            pickle.load(open(mappings_path, 'r'))
        parameters = pickle.load(open(parameters_path))

        self.item2id = item2id
        self.id2item = id2item
        self.tag2id = tag2id
        self.id2tag = id2tag
        self.word2id = word2id
        self.id2word = id2word
        self.parameters = parameters

        print(parameters)
        print('Building input graph...', end='')
        self.build_graph()
        print('Finished.')
        print('Initializing variables...', end='')
        init_op = tf.initialize_all_variables()
        self.sess.run(init_op)
        print('Finished.')
        print('Reloading parameters...', end='')
        saver = tf.train.Saver(tf.global_variables())
        checkpoint = tf.train.latest_checkpoint(model_dir)
        saver.restore(self.sess, checkpoint)
        print('Finished.') 
開發者ID:chqiwang,項目名稱:convseg,代碼行數:30,代碼來源:tagger.py

示例11: __prepare_train

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import initialize_all_variables [as 別名]
def __prepare_train(self, session):
        self.summary_writer = tf.train.SummaryWriter('logs', graph_def=session.graph_def)
        session.run(tf.initialize_all_variables()) 
開發者ID:unageanu,項目名稱:jiji-with-tensorflow-example,代碼行數:5,代碼來源:model.py

示例12: test_batch_and_unpad_2d_tensors_of_different_sizes_in_1st_dimension

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import initialize_all_variables [as 別名]
def test_batch_and_unpad_2d_tensors_of_different_sizes_in_1st_dimension(self):
    with self.test_session() as sess:
      batch_size = 3
      num_batches = 2
      examples = tf.Variable(tf.constant(2, dtype=tf.int32))
      counter = examples.count_up_to(num_batches * batch_size + 2)
      boxes = tf.tile(
          tf.reshape(tf.range(4), [1, 4]), tf.stack([counter, tf.constant(1)]))
      batch_queue = batcher.BatchQueue(
          tensor_dict={'boxes': boxes},
          batch_size=batch_size,
          batch_queue_capacity=100,
          num_batch_queue_threads=1,
          prefetch_queue_capacity=100)
      batch = batch_queue.dequeue()

      for tensor_dict in batch:
        for tensor in tensor_dict.values():
          self.assertAllEqual([None, 4], tensor.get_shape().as_list())

      tf.initialize_all_variables().run()
      with slim.queues.QueueRunners(sess):
        i = 2
        for _ in range(num_batches):
          batch_np = sess.run(batch)
          for tensor_dict in batch_np:
            for tensor in tensor_dict.values():
              self.assertAllEqual(tensor, np.tile(np.arange(4), (i, 1)))
              i += 1
        with self.assertRaises(tf.errors.OutOfRangeError):
          sess.run(batch) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:33,代碼來源:batcher_test.py

示例13: test_batch_and_unpad_2d_tensors_of_different_sizes_in_all_dimensions

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import initialize_all_variables [as 別名]
def test_batch_and_unpad_2d_tensors_of_different_sizes_in_all_dimensions(
      self):
    with self.test_session() as sess:
      batch_size = 3
      num_batches = 2
      examples = tf.Variable(tf.constant(2, dtype=tf.int32))
      counter = examples.count_up_to(num_batches * batch_size + 2)
      image = tf.reshape(
          tf.range(counter * counter), tf.stack([counter, counter]))
      batch_queue = batcher.BatchQueue(
          tensor_dict={'image': image},
          batch_size=batch_size,
          batch_queue_capacity=100,
          num_batch_queue_threads=1,
          prefetch_queue_capacity=100)
      batch = batch_queue.dequeue()

      for tensor_dict in batch:
        for tensor in tensor_dict.values():
          self.assertAllEqual([None, None], tensor.get_shape().as_list())

      tf.initialize_all_variables().run()
      with slim.queues.QueueRunners(sess):
        i = 2
        for _ in range(num_batches):
          batch_np = sess.run(batch)
          for tensor_dict in batch_np:
            for tensor in tensor_dict.values():
              self.assertAllEqual(tensor, np.arange(i * i).reshape((i, i)))
              i += 1
        with self.assertRaises(tf.errors.OutOfRangeError):
          sess.run(batch) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:34,代碼來源:batcher_test.py

示例14: test_batch_and_unpad_2d_tensors_of_same_size_in_all_dimensions

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import initialize_all_variables [as 別名]
def test_batch_and_unpad_2d_tensors_of_same_size_in_all_dimensions(self):
    with self.test_session() as sess:
      batch_size = 3
      num_batches = 2
      examples = tf.Variable(tf.constant(1, dtype=tf.int32))
      counter = examples.count_up_to(num_batches * batch_size + 1)
      image = tf.reshape(tf.range(1, 13), [4, 3]) * counter
      batch_queue = batcher.BatchQueue(
          tensor_dict={'image': image},
          batch_size=batch_size,
          batch_queue_capacity=100,
          num_batch_queue_threads=1,
          prefetch_queue_capacity=100)
      batch = batch_queue.dequeue()

      for tensor_dict in batch:
        for tensor in tensor_dict.values():
          self.assertAllEqual([4, 3], tensor.get_shape().as_list())

      tf.initialize_all_variables().run()
      with slim.queues.QueueRunners(sess):
        i = 1
        for _ in range(num_batches):
          batch_np = sess.run(batch)
          for tensor_dict in batch_np:
            for tensor in tensor_dict.values():
              self.assertAllEqual(tensor, np.arange(1, 13).reshape((4, 3)) * i)
              i += 1
        with self.assertRaises(tf.errors.OutOfRangeError):
          sess.run(batch) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:32,代碼來源:batcher_test.py

示例15: test_batcher_when_batch_size_is_one

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import initialize_all_variables [as 別名]
def test_batcher_when_batch_size_is_one(self):
    with self.test_session() as sess:
      batch_size = 1
      num_batches = 2
      examples = tf.Variable(tf.constant(2, dtype=tf.int32))
      counter = examples.count_up_to(num_batches * batch_size + 2)
      image = tf.reshape(
          tf.range(counter * counter), tf.stack([counter, counter]))
      batch_queue = batcher.BatchQueue(
          tensor_dict={'image': image},
          batch_size=batch_size,
          batch_queue_capacity=100,
          num_batch_queue_threads=1,
          prefetch_queue_capacity=100)
      batch = batch_queue.dequeue()

      for tensor_dict in batch:
        for tensor in tensor_dict.values():
          self.assertAllEqual([None, None], tensor.get_shape().as_list())

      tf.initialize_all_variables().run()
      with slim.queues.QueueRunners(sess):
        i = 2
        for _ in range(num_batches):
          batch_np = sess.run(batch)
          for tensor_dict in batch_np:
            for tensor in tensor_dict.values():
              self.assertAllEqual(tensor, np.arange(i * i).reshape((i, i)))
              i += 1
        with self.assertRaises(tf.errors.OutOfRangeError):
          sess.run(batch) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:33,代碼來源:batcher_test.py


注:本文中的tensorflow.initialize_all_variables方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。