本文整理匯總了Python中tensorflow.init_scope方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.init_scope方法的具體用法?Python tensorflow.init_scope怎麽用?Python tensorflow.init_scope使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.init_scope方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: tf_times
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import init_scope [as 別名]
def tf_times():
"""Returns (time since start, time since last) as a tensorflow op."""
# Keep track of start and last times
with tf.init_scope():
init = tf.timestamp()
def make(name):
return tf.Variable(init, name=name, trainable=False, use_resource=True)
start = make('start_time')
last = make('last_time')
# Get new time and update last
now = tf.timestamp()
prev = last.read_value()
with tf.control_dependencies([prev]):
with tf.control_dependencies([last.assign(now)]):
return tf.cast(now - start.read_value(), tf.float32), tf.cast(now - prev, tf.float32)
示例2: update_state
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import init_scope [as 別名]
def update_state(self, values, sample_weight=None):
values = tf.cast(values, self.values_dtype)
if not self.built:
with tf.name_scope(self.name), tf.init_scope():
self.build(values.shape)
unchanged_values = tf.math.count_nonzero(
tf.equal(self._previous_values, values)
)
flip_ratio = 1 - (
tf.cast(unchanged_values, self.dtype) / tf.cast(self._size, self.dtype)
)
update_total_op = self.total.assign_add(flip_ratio * tf.sign(self.count))
with tf.control_dependencies([update_total_op]):
update_count_op = self.count.assign_add(1)
with tf.control_dependencies([update_count_op]):
return self._previous_values.assign(values)
示例3: _clone_metrics
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import init_scope [as 別名]
def _clone_metrics(metrics):
"""Creates a copy of the maybe-nested metric specification.
Args:
metrics: A collection of metric specifications. Supports the same set of
formats as the `metrics` argument in `tf.keras.Model.compile`.
Returns:
The same format as the `metrics` argument, with all `tf.keras.metric.Metric`
objects replaced by their copies.
"""
def clone(metric):
# A `Metric` object is stateful and can only be used in 1 model on 1 output.
# Cloning the object allows the same metric to be applied in both base and
# adversarial-regularized models, and also on multiple outputs in one model.
# The cloning logic is the same as the `clone_metric` function in
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/keras/metrics.py
if not isinstance(metric, tf.keras.metrics.Metric):
return metric
with tf.init_scope():
return metric.__class__.from_config(metric.get_config())
return tf.nest.map_structure(clone, metrics)
示例4: __call__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import init_scope [as 別名]
def __call__(self):
with tf.init_scope():
if self.mode == 'interleave':
return next(self.cycled_masks)
elif self.mode == 'merged_head':
# avoid re-computation
if self.merged_head is None:
nL = self.masks[0].shape[0]
self.merged_head = tf.ones((nL, nL), dtype=tf.int32)
for mask in self.masks:
self.merged_head = self.merged_head * mask
return self.merged_head
elif self.mode == 'heads':
return np.array(self.masks)
else:
raise ValueError('Not supported attention mode')
示例5: get_global_variables_safely
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import init_scope [as 別名]
def get_global_variables_safely():
"""If not executing eagerly, returns tf.global_variables().
Raises a ValueError if eager execution is enabled,
because the variables are not tracked when executing eagerly.
If executing eagerly, use a Keras model's .variables property instead.
Returns:
The result of tf.global_variables()
"""
with tf.init_scope():
if tf.executing_eagerly():
raise ValueError("Global variables collection is not tracked when "
"executing eagerly. Use a Keras model's `.variables` "
"attribute instead.")
return tf.global_variables()
開發者ID:ShivangShekhar,項目名稱:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代碼行數:19,代碼來源:variables_helper.py
示例6: get_summary_writer
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import init_scope [as 別名]
def get_summary_writer(save_dir, subdir='', comm=MPI.COMM_WORLD):
if comm.Get_rank() != 0:
return None
if save_dir is None:
return None
with tf.init_scope():
return summary.create_file_writer(os.path.join(save_dir, 'tb', subdir))
示例7: _set_initializers
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import init_scope [as 別名]
def _set_initializers(self):
"""Change initializers to load a language model from a tensorflow checkpoint."""
# Skip if
# 1. We're not rank 0. Values will be copied from there.
# 2. We want random initialization. Normal initialization will do the work.
if not self.is_root or self.trained_model.name == 'test':
return
with tf.init_scope():
scope = self.scope.name
# Initialize!
params = {v.op.name: v for v in utils.find_trainable_variables(scope)}
self.trained_model.init_op(params, new_scope=scope)
示例8: _set_initializers
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import init_scope [as 別名]
def _set_initializers(self):
"""Change initializers to load a language model from a tensorflow checkpoint."""
# Skip if
# 1. We're not rank 0. Values will be copied from there.
# 2. We want random initialization. Normal initialization will do the work.
if not self.is_root or self.trained_model.name == 'test':
return
with tf.init_scope():
# Initialize!
params = {v.op.name: v for v in utils.find_trainable_variables(self.scope)}
assert params
self.trained_model.init_op(params, new_scope=self.scope)
示例9: apply_gradients
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import init_scope [as 別名]
def apply_gradients(self, grads_and_vars, name: Optional[str] = None, **kwargs):
"""Apply gradients to variables for each optimizer.
On the first call to `apply_gradients()`, compute the mapping from variables to
optimizers and cache it in the `self.var_opt_mapping` dict for serialization and
faster access.
"""
if self.var_opt_mapping is None:
# Convert `grads_and_vars` to list so we can iterate multiple times over it
grads_and_vars = list(grads_and_vars)
self._compute_var_opt_mapping(grads_and_vars)
# Split gradients and variables into a separate list for each optimizer
grad_var_lists = [[] for _ in range(len(self.pred_opt_pairs) + 1)]
for grad, var in grads_and_vars:
if var.name in self.var_opt_mapping:
grad_var_lists[self.var_opt_mapping[var.name]].append((grad, var))
with tf.init_scope():
for optimizer, opt_grads_and_vars in zip(self.optimizers, grad_var_lists):
optimizer._create_slots([v for (_, v) in grads_and_vars])
return tf.distribute.get_replica_context().merge_call(
self._apply_gradients, args=(grad_var_lists, name), kwargs=kwargs
)
示例10: test_load_save_eager
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import init_scope [as 別名]
def test_load_save_eager(self):
import tensorflow as tf
tf.enable_eager_execution()
from delira.io.tf import load_checkpoint_eager, save_checkpoint_eager
from delira.models import AbstractTfEagerNetwork
import numpy as np
class DummyNetwork(AbstractTfEagerNetwork):
def __init__(self, in_channels, n_outputs):
super().__init__(in_channels=in_channels, n_outputs=n_outputs)
with tf.init_scope():
self.net = self._build_model(in_channels, n_outputs)
@staticmethod
def _build_model(in_channels, n_outputs):
return tf.keras.models.Sequential(
layers=[
tf.keras.layers.Dense(
64,
input_shape=in_channels,
bias_initializer='glorot_uniform'),
tf.keras.layers.ReLU(),
tf.keras.layers.Dense(
n_outputs,
bias_initializer='glorot_uniform')])
def call(self, inputs):
return self.net(inputs)
net = DummyNetwork((32,), 1)
input_tensor = tf.constant(np.random.rand(1, 32).astype(np.float32))
result_pre_save = net(input_tensor)
save_checkpoint_eager("./model_eager", model=net)
loaded_state = load_checkpoint_eager("./model_eager", model=net)
loaded_net = loaded_state["model"]
result_post_save = loaded_net(input_tensor)
self.assertTrue(np.array_equal(result_post_save, result_pre_save))
示例11: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import init_scope [as 別名]
def __init__(self, spec, meta_graph, trainable, checkpoint_path, name):
"""Private constructor.
Args:
spec: _ModuleSpec instance.
meta_graph: MetaGraphDef to use
trainable: whether module is trainable.
checkpoint_path: None or a string to the variables checkpoints.
name: variable and scope name where to instantiate the Module. Must be an
unused name scope.
"""
self._spec = spec
self._meta_graph = meta_graph
self._trainable = trainable
self._checkpoint_path = checkpoint_path
register_ops_if_needed({
op.name for op in self._meta_graph.meta_info_def.stripped_op_list.op})
if _is_tpu_graph_function():
# TODO(b/129142908): Hub should not use `tf.init_scope` since that makes
# it incompatible with tf.compat.v1.wrap_function. For now the only use
# case where hub used it was for tpu compatibility. This should be cleaned
# up at an early convinience.
scope_func = tf.init_scope
else:
scope_func = lambda: tf.control_dependencies(None)
# Clear dependencies so modules can be constructed from deep inside
# functions that have dependencies active. Note that the dependencies
# would be active when applying the Module signature, just not active
# when creating the Module state. This use case has showed up in some
# TPU training code.
with scope_func():
self._init_state(name)
示例12: _create_optimizer
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import init_scope [as 別名]
def _create_optimizer(self):
"""Initializes the hyperparameters and sets the self._optimizer property."""
if self._optimizer:
return
if not self._layer_collection:
self.register_layers(self._model, self._loss)
if self._config['adapt_damping']:
if 'train_batch' not in self._kfac_kwargs:
raise ValueError('Must provide a train_batch tuple to use adaptive '
'damping. Use register_train_batch or pass it in '
'during optimizer construction.')
if 'loss_fn' not in self._kfac_kwargs:
self._kfac_kwargs['loss_fn'] = utils.get_loss_fn(
self._model, self._loss, loss_weights=self._config['loss_weights'])
with tf.name_scope(self._name):
with tf.init_scope():
# "iterations" property will create iterations if necessary.
_ = self.iterations
self._create_hypers()
self._kfac_kwargs.update(self._hyper)
try:
# We use the TF 1 variable_scope instead of the TF 2 recommended
# name_scope because we need to recover the variables created in this
# scope, which is not possible with name_scope.
with tf.variable_scope(self._tf_var_scope):
self._optimizer = _KFAC_OPT_CLASS(
layer_collection=self._layer_collection, **self._kfac_kwargs)
except ValueError as e:
msg = str(e)
if re.search('Variable .* already exists', msg):
raise ValueError(
'You may have instantiated a KFAC Optimizer with the same name as '
'an existing one. Try resetting the default graph, instantiating '
'the optimizer with a different name, or changing the optimizer\'s '
'name.\nHere is the original ValueError:\n ' + msg)
elif re.search('Found the following errors with variable registration'
'.*gamma.*registered with wrong number of uses.*', msg):
# We don't regex the name batch_normalization because the user could
# have renamed the layer. We don't regex beta because they could have
# used BatchNorm without the shift.
raise ValueError(
'There may have been an issue registering BatchNormalization. Try '
'using tf.keras.backend.set_learning_phase before model '
'construction. An alternative solution is to use the unfused '
'batchnorm implementation (pass the argument fused=False to '
'BatchNormalization).\nHere is the original ValueError:\n ' + msg)
else:
raise e
示例13: _generate
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import init_scope [as 別名]
def _generate(self, feature_map_shape_list):
"""Generates a collection of bounding boxes to be used as anchors.
Args:
feature_map_shape_list: list of pairs of convnet layer resolutions in the
format [(height_0, width_0)]. For example, setting
feature_map_shape_list=[(8, 8)] asks for anchors that correspond
to an 8x8 layer. For this anchor generator, only lists of length 1 are
allowed.
Returns:
boxes_list: a list of BoxLists each holding anchor boxes corresponding to
the input feature map shapes.
Raises:
ValueError: if feature_map_shape_list, box_specs_list do not have the same
length.
ValueError: if feature_map_shape_list does not consist of pairs of
integers
"""
if not (isinstance(feature_map_shape_list, list)
and len(feature_map_shape_list) == 1):
raise ValueError('feature_map_shape_list must be a list of length 1.')
if not all([isinstance(list_item, tuple) and len(list_item) == 2
for list_item in feature_map_shape_list]):
raise ValueError('feature_map_shape_list must be a list of pairs.')
# Create constants in init_scope so they can be created in tf.functions
# and accessed from outside of the function.
with tf.init_scope():
self._base_anchor_size = tf.cast(tf.convert_to_tensor(
self._base_anchor_size), dtype=tf.float32)
self._anchor_stride = tf.cast(tf.convert_to_tensor(
self._anchor_stride), dtype=tf.float32)
self._anchor_offset = tf.cast(tf.convert_to_tensor(
self._anchor_offset), dtype=tf.float32)
grid_height, grid_width = feature_map_shape_list[0]
scales_grid, aspect_ratios_grid = ops.meshgrid(self._scales,
self._aspect_ratios)
scales_grid = tf.reshape(scales_grid, [-1])
aspect_ratios_grid = tf.reshape(aspect_ratios_grid, [-1])
anchors = tile_anchors(grid_height,
grid_width,
scales_grid,
aspect_ratios_grid,
self._base_anchor_size,
self._anchor_stride,
self._anchor_offset)
num_anchors = anchors.num_boxes_static()
if num_anchors is None:
num_anchors = anchors.num_boxes()
anchor_indices = tf.zeros([num_anchors])
anchors.add_field('feature_map_index', anchor_indices)
return [anchors]
開發者ID:ShivangShekhar,項目名稱:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代碼行數:58,代碼來源:grid_anchor_generator.py