本文整理匯總了Python中tensorflow.image_summary方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.image_summary方法的具體用法?Python tensorflow.image_summary怎麽用?Python tensorflow.image_summary使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.image_summary方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: visualization
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import image_summary [as 別名]
def visualization(self, n):
fake_sum_train, superimage_train =\
self.visualize_one_superimage(self.fake_images[:n * n],
self.images[:n * n],
n, "train")
fake_sum_test, superimage_test =\
self.visualize_one_superimage(self.fake_images[n * n:2 * n * n],
self.images[n * n:2 * n * n],
n, "test")
self.superimages = tf.concat(0, [superimage_train, superimage_test])
self.image_summary = tf.merge_summary([fake_sum_train, fake_sum_test])
hr_fake_sum_train, hr_superimage_train =\
self.visualize_one_superimage(self.hr_fake_images[:n * n],
self.hr_images[:n * n, :, :, :],
n, "hr_train")
hr_fake_sum_test, hr_superimage_test =\
self.visualize_one_superimage(self.hr_fake_images[n * n:2 * n * n],
self.hr_images[n * n:2 * n * n],
n, "hr_test")
self.hr_superimages =\
tf.concat(0, [hr_superimage_train, hr_superimage_test])
self.hr_image_summary =\
tf.merge_summary([hr_fake_sum_train, hr_fake_sum_test])
示例2: generator
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import image_summary [as 別名]
def generator(z, latent_c):
depths = [32, 64, 64, 64, 64, 64, 3]
sizes = zip(
np.linspace(4, IMAGE_SIZE['resized'][0], len(depths)).astype(np.int),
np.linspace(6, IMAGE_SIZE['resized'][1], len(depths)).astype(np.int))
with slim.arg_scope([slim.conv2d_transpose],
normalizer_fn=slim.batch_norm,
kernel_size=3):
with tf.variable_scope("gen"):
size = sizes.pop(0)
net = tf.concat(1, [z, latent_c])
net = slim.fully_connected(net, depths[0] * size[0] * size[1])
net = tf.reshape(net, [-1, size[0], size[1], depths[0]])
for depth in depths[1:-1] + [None]:
net = tf.image.resize_images(
net, sizes.pop(0),
tf.image.ResizeMethod.NEAREST_NEIGHBOR)
if depth:
net = slim.conv2d_transpose(net, depth)
net = slim.conv2d_transpose(
net, depths[-1], activation_fn=tf.nn.tanh, stride=1, normalizer_fn=None)
tf.image_summary("gen", net, max_images=8)
return net
示例3: zap_data
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import image_summary [as 別名]
def zap_data(FLAGS, shuffle):
files = glob(FLAGS.file_pattern)
filename_queue = tf.train.string_input_producer(
files,
shuffle=shuffle,
num_epochs=None if shuffle else 1)
image = read_image(filename_queue, shuffle)
# Mini batch
num_preprocess_threads = 1 if FLAGS.debug else 4
min_queue_examples = 100 if FLAGS.debug else 10000
if shuffle:
images = tf.train.shuffle_batch(
image,
batch_size=FLAGS.batch_size,
num_threads=num_preprocess_threads,
capacity=min_queue_examples + 3 * FLAGS.batch_size,
min_after_dequeue=min_queue_examples)
else:
images = tf.train.batch(
image,
FLAGS.batch_size,
allow_smaller_final_batch=True)
# tf.image_summary('images', images, max_images=8)
return dict(batch=images, size=len(files))
示例4: get_input
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import image_summary [as 別名]
def get_input(self):
# Input data.
# Load the training, validation and test data into constants that are
# attached to the graph.
self.mnist = input_data.read_data_sets('data',
one_hot=True,
fake_data=False)
# Input placehoolders
with tf.name_scope('input'):
self.x = tf.placeholder(tf.float32, [None, 784], name='x-input')
self.y_true = tf.placeholder(tf.float32, [None, 10], name='y-input')
self.keep_prob = tf.placeholder(tf.float32, name='drop_out')
# below is just for the sake of visualization
with tf.name_scope('input_reshape'):
image_shaped_input = tf.reshape(self.x, [-1, 28, 28, 1])
tf.image_summary('input', image_shaped_input, 10)
return
示例5: preprocess_for_eval
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import image_summary [as 別名]
def preprocess_for_eval(image, output_height, output_width):
"""Preprocesses the given image for evaluation.
Args:
image: A `Tensor` representing an image of arbitrary size.
output_height: The height of the image after preprocessing.
output_width: The width of the image after preprocessing.
Returns:
A preprocessed image.
"""
tf.image_summary('image', tf.expand_dims(image, 0))
# Transform the image to floats.
image = tf.to_float(image)
# Resize and crop if needed.
resized_image = tf.image.resize_image_with_crop_or_pad(image,
output_width,
output_height)
tf.image_summary('resized_image', tf.expand_dims(resized_image, 0))
# Subtract off the mean and divide by the variance of the pixels.
return tf.image.per_image_whitening(resized_image)
示例6: inputs
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import image_summary [as 別名]
def inputs():
data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin')
filenames = [os.path.join(data_dir, 'data_batch_%d.bin' % i) for i in xrange(1, 6)]
for f in filenames:
if not tf.gfile.Exists(f):
raise ValueError('Failed to find file: ' + f)
# Create a queue that produces the filenames to read.
filename_queue = tf.train.string_input_producer(filenames)
# Read examples from files in the filename queue.
read_input = read_cifar10(filename_queue)
num_preprocess_threads = 16
min_queue_examples = int(0.4 * NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN)
input_images, ref_images = tf.train.shuffle_batch([read_input.noise_image, read_input.uint8image],
batch_size=FLAGS.batch_size, num_threads=num_preprocess_threads,
capacity=min_queue_examples + 3 * FLAGS.batch_size,
min_after_dequeue=min_queue_examples)
tf.image_summary("Input_Noise_images", input_images)
tf.image_summary("Ref_images", ref_images)
return input_images, ref_images
示例7: visualize_one_superimage
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import image_summary [as 別名]
def visualize_one_superimage(self, img_var, images, rows, filename):
stacked_img = []
for row in range(rows):
img = images[row * rows, :, :, :]
row_img = [img] # real image
for col in range(rows):
row_img.append(img_var[row * rows + col, :, :, :])
# each rows is 1realimage +10_fakeimage
stacked_img.append(tf.concat(1, row_img))
imgs = tf.expand_dims(tf.concat(0, stacked_img), 0)
current_img_summary = tf.image_summary(filename, imgs)
return current_img_summary, imgs
示例8: visualization
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import image_summary [as 別名]
def visualization(self, n):
fake_sum_train, superimage_train = \
self.visualize_one_superimage(self.fake_images[:n * n],
self.images[:n * n],
n, "train")
fake_sum_test, superimage_test = \
self.visualize_one_superimage(self.fake_images[n * n:2 * n * n],
self.images[n * n:2 * n * n],
n, "test")
self.superimages = tf.concat(0, [superimage_train, superimage_test])
self.image_summary = tf.merge_summary([fake_sum_train, fake_sum_test])
示例9: epoch_sum_images
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import image_summary [as 別名]
def epoch_sum_images(self, sess, n):
images_train, _, embeddings_train, captions_train, _ =\
self.dataset.train.next_batch(n * n, cfg.TRAIN.NUM_EMBEDDING)
images_train = self.preprocess(images_train, n)
embeddings_train = self.preprocess(embeddings_train, n)
images_test, _, embeddings_test, captions_test, _ = \
self.dataset.test.next_batch(n * n, 1)
images_test = self.preprocess(images_test, n)
embeddings_test = self.preprocess(embeddings_test, n)
images = np.concatenate([images_train, images_test], axis=0)
embeddings =\
np.concatenate([embeddings_train, embeddings_test], axis=0)
if self.batch_size > 2 * n * n:
images_pad, _, embeddings_pad, _, _ =\
self.dataset.test.next_batch(self.batch_size - 2 * n * n, 1)
images = np.concatenate([images, images_pad], axis=0)
embeddings = np.concatenate([embeddings, embeddings_pad], axis=0)
feed_dict = {self.images: images,
self.embeddings: embeddings}
gen_samples, img_summary =\
sess.run([self.superimages, self.image_summary], feed_dict)
# save images generated for train and test captions
scipy.misc.imsave('%s/train.jpg' % (self.log_dir), gen_samples[0])
scipy.misc.imsave('%s/test.jpg' % (self.log_dir), gen_samples[1])
# pfi_train = open(self.log_dir + "/train.txt", "w")
pfi_test = open(self.log_dir + "/test.txt", "w")
for row in range(n):
# pfi_train.write('\n***row %d***\n' % row)
# pfi_train.write(captions_train[row * n])
pfi_test.write('\n***row %d***\n' % row)
pfi_test.write(captions_test[row * n])
# pfi_train.close()
pfi_test.close()
return img_summary
示例10: _generate_image_and_label_batch
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import image_summary [as 別名]
def _generate_image_and_label_batch(image, label, min_queue_examples,
batch_size):
"""Construct a queued batch of images and labels.
Args:
image: 3-D Tensor of [height, width, 3] of type.float32.
label: 1-D Tensor of type.int32
min_queue_examples: int32, minimum number of samples to retain
in the queue that provides of batches of examples.
batch_size: Number of images per batch.
Returns:
images: Images. 4D tensor of [batch_size, height, width, 3] size.
labels: Labels. 1D tensor of [batch_size] size.
"""
# Create a queue that shuffles the examples, and then
# read 'batch_size' images + labels from the example queue.
num_preprocess_threads = 16
images, label_batch = tf.train.shuffle_batch(
[image, label],
batch_size=batch_size,
num_threads=num_preprocess_threads,
capacity=min_queue_examples + 3 * batch_size,
min_after_dequeue=min_queue_examples)
# Display the training images in the visualizer.
# tf.image_summary('images', images)
tf.summary.image('images', images)
return images, tf.reshape(label_batch, [batch_size])
示例11: _generate_image_and_label_batch
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import image_summary [as 別名]
def _generate_image_and_label_batch(image, label, key, min_queue_examples,
batch_size):
"""Construct a queued batch of images and labels.
Args:
image: 3-D Tensor of [height, width, 1] of type.float32.
label: 1-D Tensor of type.int32
min_queue_examples: int32, minimum number of samples to retain
in the queue that provides of batches of examples.
batch_size: Number of images per batch.
Returns:
images: Images. 4D tensor of [batch_size, height, width, 1] size.
labels: Labels. 1D tensor of [batch_size] size.
"""
# Create a queue that shuffles the examples, and then
# read 'batch_size' images + labels from the example queue.
num_preprocess_threads = 16
images, label_batch, key_batch = tf.train.shuffle_batch(
[image, label, key],
batch_size=batch_size,
num_threads=num_preprocess_threads,
capacity=min_queue_examples + 3 * batch_size,
min_after_dequeue=min_queue_examples)
# Display the training images in the visualizer.
tf.image_summary('images', images)
return images, tf.reshape(label_batch, [batch_size]), tf.reshape(key_batch, [batch_size])
示例12: set_activation_summary
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import image_summary [as 別名]
def set_activation_summary(self):
'''Log each layers activations and sparsity.'''
tf.image_summary("input images", self.input_layer.output, max_images=100)
for var in tf.trainable_variables():
tf.histogram_summary(var.op.name, var)
for layer in self.hidden_layers:
tf.histogram_summary(layer.name + '/activations', layer.output)
tf.scalar_summary(layer.name + '/sparsity', tf.nn.zero_fraction(layer.output))
示例13: testImageSummary
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import image_summary [as 別名]
def testImageSummary(self):
image = np.zeros((2, 2, 2, 3), dtype=np.uint8)
self.check(tf.image_summary, (['img'], image), 'Tags must be a scalar')
示例14: testTFSummaryImage
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import image_summary [as 別名]
def testTFSummaryImage(self):
"""Verify processing of tf.summary.image."""
event_sink = _EventGenerator(zero_out_timestamps=True)
writer = SummaryToEventTransformer(event_sink)
with self.test_session() as sess:
ipt = tf.ones([10, 4, 4, 3], tf.uint8)
# This is an interesting example, because the old tf.image_summary op
# would throw an error here, because it would be tag reuse.
# Using the tf node name instead allows argument re-use to the image
# summary.
with tf.name_scope('1'):
tf.summary.image('images', ipt, max_outputs=1)
with tf.name_scope('2'):
tf.summary.image('images', ipt, max_outputs=2)
with tf.name_scope('3'):
tf.summary.image('images', ipt, max_outputs=3)
merged = tf.merge_all_summaries()
writer.add_graph(sess.graph)
for i in xrange(10):
summ = sess.run(merged)
writer.add_summary(summ, global_step=i)
accumulator = ea.EventAccumulator(event_sink)
accumulator.Reload()
tags = [
u'1/images/image', u'2/images/image/0', u'2/images/image/1',
u'3/images/image/0', u'3/images/image/1', u'3/images/image/2'
]
self.assertTagsEqual(accumulator.Tags(), {
ea.IMAGES: tags,
ea.AUDIO: [],
ea.SCALARS: [],
ea.HISTOGRAMS: [],
ea.COMPRESSED_HISTOGRAMS: [],
ea.GRAPH: True,
ea.META_GRAPH: False,
ea.RUN_METADATA: []
})
示例15: _generate_image_and_label_batch
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import image_summary [as 別名]
def _generate_image_and_label_batch(image, label, min_queue_examples,
batch_size, shuffle):
"""Construct a queued batch of images and labels.
Args:
image: 3-D Tensor of [height, width, 3] of type.float32.
label: 1-D Tensor of type.int32
min_queue_examples: int32, minimum number of samples to retain
in the queue that provides of batches of examples.
batch_size: Number of images per batch.
shuffle: boolean indicating whether to use a shuffling queue.
Returns:
images: Images. 4D tensor of [batch_size, height, width, 3] size.
labels: Labels. 1D tensor of [batch_size] size.
"""
# Create a queue that shuffles the examples, and then
# read 'batch_size' images + labels from the example queue.
num_preprocess_threads = 16
if shuffle:
images, label_batch = tf.train.shuffle_batch(
[image, label],
batch_size=batch_size,
num_threads=num_preprocess_threads,
capacity=min_queue_examples + 3 * batch_size,
min_after_dequeue=min_queue_examples)
else:
images, label_batch = tf.train.batch(
[image, label],
batch_size=batch_size,
num_threads=num_preprocess_threads,
capacity=min_queue_examples + 3 * batch_size)
# Display the training images in the visualizer.
tf.image_summary('images', images)
return images, tf.reshape(label_batch, [batch_size])