本文整理匯總了Python中tensorflow.imag方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.imag方法的具體用法?Python tensorflow.imag怎麽用?Python tensorflow.imag使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.imag方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: call
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import imag [as 別名]
def call(self, inputx):
if not inputx.dtype in [tf.complex64, tf.complex128]:
print('Warning: inputx is not complex. Converting.', file=sys.stderr)
# if inputx is float, this will assume 0 imag channel
inputx = tf.cast(inputx, tf.complex64)
# get the right fft
if self.ndims == 1:
fft = tf.fft
elif self.ndims == 2:
fft = tf.fft2d
else:
fft = tf.fft3d
perm_dims = [0, self.ndims + 1] + list(range(1, self.ndims + 1))
invert_perm_ndims = [0] + list(range(2, self.ndims + 2)) + [1]
perm_inputx = K.permute_dimensions(inputx, perm_dims) # [batch_size, nb_features, *vol_size]
fft_inputx = fft(perm_inputx)
return K.permute_dimensions(fft_inputx, invert_perm_ndims)
示例2: _compareGradient
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import imag [as 別名]
def _compareGradient(self, x):
# x[:, 0] is real, x[:, 1] is imag. We combine real and imag into
# complex numbers. Then, we extract real and imag parts and
# computes the squared sum. This is obviously the same as sum(real
# * real) + sum(imag * imag). We just want to make sure the
# gradient function is checked.
with self.test_session():
inx = tf.convert_to_tensor(x)
real, imag = tf.split(1, 2, inx)
real, imag = tf.reshape(real, [-1]), tf.reshape(imag, [-1])
cplx = tf.complex(real, imag)
cplx = tf.conj(cplx)
loss = tf.reduce_sum(
tf.square(tf.real(cplx))) + tf.reduce_sum(
tf.square(tf.imag(cplx)))
epsilon = 1e-3
jacob_t, jacob_n = tf.test.compute_gradient(inx,
list(x.shape),
loss,
[1],
x_init_value=x,
delta=epsilon)
self.assertAllClose(jacob_t, jacob_n, rtol=epsilon, atol=epsilon)
示例3: get_mu_tensor
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import imag [as 別名]
def get_mu_tensor(self):
const_fact = self._dist_to_opt_avg**2 * self._h_min**2 / 2 / self._grad_var
coef = tf.Variable([-1.0, 3.0, 0.0, 1.0], dtype=tf.float32, name="cubic_solver_coef")
coef = tf.scatter_update(coef, tf.constant(2), -(3 + const_fact) )
roots = tf.py_func(np.roots, [coef], Tout=tf.complex64, stateful=False)
# filter out the correct root
root_idx = tf.logical_and(tf.logical_and(tf.greater(tf.real(roots), tf.constant(0.0) ),
tf.less(tf.real(roots), tf.constant(1.0) ) ), tf.less(tf.abs(tf.imag(roots) ), 1e-5) )
# in case there are two duplicated roots satisfying the above condition
root = tf.reshape(tf.gather(tf.gather(roots, tf.where(root_idx) ), tf.constant(0) ), shape=[] )
tf.assert_equal(tf.size(root), tf.constant(1) )
dr = self._h_max / self._h_min
mu = tf.maximum(tf.real(root)**2, ( (tf.sqrt(dr) - 1)/(tf.sqrt(dr) + 1) )**2)
return mu
示例4: test_Imag
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import imag [as 別名]
def test_Imag(self):
t = tf.imag(tf.Variable(self.random(3, 4, complex=True)))
self.check(t)
示例5: _compareMake
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import imag [as 別名]
def _compareMake(self, real, imag, use_gpu):
np_ans = real + (1j) * imag
with self.test_session(use_gpu=use_gpu):
real = tf.convert_to_tensor(real)
imag = tf.convert_to_tensor(imag)
tf_ans = tf.complex(real, imag)
out = tf_ans.eval()
self.assertAllEqual(np_ans, out)
self.assertShapeEqual(np_ans, tf_ans)
示例6: testMake
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import imag [as 別名]
def testMake(self):
real = (np.arange(-3, 3) / 4.).reshape([1, 3, 2]).astype(np.float32)
imag = (np.arange(-3, 3) / 5.).reshape([1, 3, 2]).astype(np.float32)
for use_gpu in [False, True]:
self._compareMake(real, imag, use_gpu)
self._compareMake(real, 12.0, use_gpu)
self._compareMake(23.0, imag, use_gpu)
示例7: _compareRealImag
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import imag [as 別名]
def _compareRealImag(self, cplx, use_gpu):
np_real, np_imag = np.real(cplx), np.imag(cplx)
with self.test_session(use_gpu=use_gpu) as sess:
inx = tf.convert_to_tensor(cplx)
tf_real = tf.real(inx)
tf_imag = tf.imag(inx)
tf_real_val, tf_imag_val = sess.run([tf_real, tf_imag])
self.assertAllEqual(np_real, tf_real_val)
self.assertAllEqual(np_imag, tf_imag_val)
self.assertShapeEqual(np_real, tf_real)
self.assertShapeEqual(np_imag, tf_imag)
示例8: testRealImag64
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import imag [as 別名]
def testRealImag64(self):
real = (np.arange(-3, 3) / 4.).reshape([1, 3, 2]).astype(np.float32)
imag = (np.arange(-3, 3) / 5.).reshape([1, 3, 2]).astype(np.float32)
cplx = real + 1j * imag
self._compareRealImag(cplx, use_gpu=False)
self._compareRealImag(cplx, use_gpu=True)
示例9: testRealImag128
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import imag [as 別名]
def testRealImag128(self):
real = (np.arange(-3, 3) / 4.).reshape([1, 3, 2]).astype(np.float64)
imag = (np.arange(-3, 3) / 5.).reshape([1, 3, 2]).astype(np.float64)
cplx = real + 1j * imag
self._compareRealImag(cplx, use_gpu=False)
self._compareRealImag(cplx, use_gpu=True)
示例10: testConj128
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import imag [as 別名]
def testConj128(self):
real = (np.arange(-3, 3) / 4.).reshape([1, 3, 2]).astype(np.float64)
imag = (np.arange(-3, 3) / 5.).reshape([1, 3, 2]).astype(np.float64)
cplx = real + 1j * imag
self._compareConj(cplx, use_gpu=False)
self._compareConj(cplx, use_gpu=True)
示例11: _compareMulGradient
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import imag [as 別名]
def _compareMulGradient(self, data):
# data is a float matrix of shape [n, 4]. data[:, 0], data[:, 1],
# data[:, 2], data[:, 3] are real parts of x, imaginary parts of
# x, real parts of y and imaginary parts of y.
with self.test_session():
inp = tf.convert_to_tensor(data)
xr, xi, yr, yi = tf.split(1, 4, inp)
def vec(x): # Reshape to a vector
return tf.reshape(x, [-1])
xr, xi, yr, yi = vec(xr), vec(xi), vec(yr), vec(yi)
def cplx(r, i): # Combine to a complex vector
return tf.complex(r, i)
x, y = cplx(xr, xi), cplx(yr, yi)
# z is x times y in complex plane.
z = x * y
# Defines the loss function as the sum of all coefficients of z.
loss = tf.reduce_sum(tf.real(z) + tf.imag(z))
epsilon = 0.005
jacob_t, jacob_n = tf.test.compute_gradient(inp,
list(data.shape),
loss,
[1],
x_init_value=data,
delta=epsilon)
self.assertAllClose(jacob_t, jacob_n, rtol=epsilon, atol=epsilon)
示例12: mriForwardOpWithOS
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import imag [as 別名]
def mriForwardOpWithOS(self, u, coil_sens, sampling_mask):
with tf.variable_scope('mriForwardOp'):
# add frequency encoding oversampling
pad_u = tf.cast(tf.multiply(tf.cast(tf.shape(sampling_mask)[1], tf.float32), 0.25) + 1, tf.int32)
pad_l = tf.cast(tf.multiply(tf.cast(tf.shape(sampling_mask)[1], tf.float32), 0.25) - 1, tf.int32)
u_pad = tf.pad(u, [[0, 0], [pad_u, pad_l], [0, 0]])
u_pad = tf.expand_dims(u_pad, axis=1)
# apply sensitivites
coil_imgs = u_pad * coil_sens
# centered Fourier transform
Fu = tf.contrib.icg.fftc2d(coil_imgs)
# apply sampling mask
mask = tf.expand_dims(sampling_mask, axis=1)
kspace = tf.complex(tf.real(Fu) * mask, tf.imag(Fu) * mask)
return kspace
示例13: mriAdjointOpWithOS
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import imag [as 別名]
def mriAdjointOpWithOS(self, f, coil_sens, sampling_mask):
with tf.variable_scope('mriAdjointOp'):
# variables to remove frequency encoding oversampling
pad_u = tf.cast(tf.multiply(tf.cast(tf.shape(sampling_mask)[1], tf.float32), 0.25) + 1, tf.int32)
pad_l = tf.cast(tf.multiply(tf.cast(tf.shape(sampling_mask)[1], tf.float32), 0.25) - 1, tf.int32)
# apply mask and perform inverse centered Fourier transform
mask = tf.expand_dims(sampling_mask, axis=1)
Finv = tf.contrib.icg.ifftc2d(tf.complex(tf.real(f) * mask, tf.imag(f) * mask))
# multiply coil images with sensitivities and sum up over channels
img = tf.reduce_sum(Finv * tf.conj(coil_sens), 1)[:, pad_u:-pad_l, :]
return img
示例14: mriForwardOp
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import imag [as 別名]
def mriForwardOp(self, u, coil_sens, sampling_mask):
with tf.variable_scope('mriForwardOp'):
# apply sensitivites
coil_imgs = tf.expand_dims(u, axis=1) * coil_sens
# centered Fourier transform
Fu = tf.contrib.icg.fftc2d(coil_imgs)
# apply sampling mask
mask = tf.expand_dims(sampling_mask, axis=1)
kspace = tf.complex(tf.real(Fu) * mask, tf.imag(Fu) * mask)
return kspace
示例15: test_complex_to_channels
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import imag [as 別名]
def test_complex_to_channels(self):
data_r = tf.random_uniform([3, 10, 10, 2])
data_i = tf.random_uniform([3, 10, 10, 2])
data = tf.complex(data_r, data_i)
data_out = tfmri.complex_to_channels(data)
diff_r = data_r - tf.real(data)
diff_i = data_i - tf.imag(data)
diff = np.mean(diff_r ** 2 + diff_i ** 2)
self.assertTrue(diff < eps)
self.assertEqual(data_out.shape[-1], 4)
data_out = tfmri.complex_to_channels(
data, data_format='channels_first')
diff_r = data_r - tf.real(data)
diff_i = data_i - tf.imag(data)
diff = np.mean(diff_r ** 2 + diff_i ** 2)
self.assertTrue(diff < eps)
self.assertEqual(data_out.shape[1], 20)
with self.assertRaises(TypeError):
# Input must be complex
data_out = tfmri.complex_to_channels(data_r)
with self.assertRaises(TypeError):
# shape error
data_r = tf.random_uniform([1, 3, 10, 10, 2])
data_i = tf.random_uniform([1, 3, 10, 10, 2])
data = tf.complex(data_r, data_i)
data_out = tfmri.complex_to_channels(data)
with self.assertRaises(TypeError):
# shape error
data_r = tf.random_uniform([10, 2])
data_i = tf.random_uniform([10, 2])
data = tf.complex(data_r, data_i)
data_out = tfmri.complex_to_channels(data)