本文整理匯總了Python中tensorflow.histogram_fixed_width方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.histogram_fixed_width方法的具體用法?Python tensorflow.histogram_fixed_width怎麽用?Python tensorflow.histogram_fixed_width使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.histogram_fixed_width方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_two_updates_on_constant_input
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import histogram_fixed_width [as 別名]
def test_two_updates_on_constant_input(self):
# Bins will be:
# (-inf, 1), [1, 2), [2, 3), [3, 4), [4, inf)
value_range = [0.0, 5.0]
values_1 = [-1.0, 0.0, 1.5, 2.0, 5.0, 15]
values_2 = [1.5, 4.5, 4.5, 4.5, 0.0, 0.0]
expected_bin_counts_1 = [2, 1, 1, 0, 2]
expected_bin_counts_2 = [2, 1, 0, 0, 3]
with self.test_session():
values = tf.placeholder(tf.float32, shape=[6])
hist = tf.histogram_fixed_width(values, value_range, nbins=5)
# The values in hist should depend on the current feed and nothing else.
self.assertAllClose(expected_bin_counts_1,
hist.eval(feed_dict={values: values_1}))
self.assertAllClose(expected_bin_counts_2,
hist.eval(feed_dict={values: values_2}))
self.assertAllClose(expected_bin_counts_1,
hist.eval(feed_dict={values: values_1}))
self.assertAllClose(expected_bin_counts_1,
hist.eval(feed_dict={values: values_1}))
示例2: test_two_updates_on_scalar_input
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import histogram_fixed_width [as 別名]
def test_two_updates_on_scalar_input(self):
# Bins will be:
# (-inf, 1), [1, 2), [2, 3), [3, 4), [4, inf)
value_range = [0.0, 5.0]
values_1 = 1.5
values_2 = 2.5
expected_bin_counts_1 = [0, 1, 0, 0, 0]
expected_bin_counts_2 = [0, 0, 1, 0, 0]
with self.test_session():
values = tf.placeholder(tf.float32, shape=[])
hist = tf.histogram_fixed_width(values, value_range, nbins=5)
# The values in hist should depend on the current feed and nothing else.
self.assertAllClose(expected_bin_counts_2,
hist.eval(feed_dict={values: values_2}))
self.assertAllClose(expected_bin_counts_1,
hist.eval(feed_dict={values: values_1}))
self.assertAllClose(expected_bin_counts_1,
hist.eval(feed_dict={values: values_1}))
self.assertAllClose(expected_bin_counts_2,
hist.eval(feed_dict={values: values_2}))
示例3: contrast
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import histogram_fixed_width [as 別名]
def contrast(image, factor):
"""Equivalent of PIL Contrast."""
degenerate = tf.image.rgb_to_grayscale(image)
# Cast before calling tf.histogram.
degenerate = tf.cast(degenerate, tf.int32)
# Compute the grayscale histogram, then compute the mean pixel value,
# and create a constant image size of that value. Use that as the
# blending degenerate target of the original image.
hist = tf.histogram_fixed_width(degenerate, [0, 255], nbins=256)
mean = tf.reduce_sum(tf.cast(hist, tf.float32)) / 256.0
degenerate = tf.ones_like(degenerate, dtype=tf.float32) * mean
degenerate = tf.clip_by_value(degenerate, 0.0, 255.0)
degenerate = tf.image.grayscale_to_rgb(tf.cast(degenerate, tf.uint8))
return blend(degenerate, image, factor)
示例4: equalize
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import histogram_fixed_width [as 別名]
def equalize(image):
"""Implements Equalize function from PIL using TF ops."""
def scale_channel(im, c):
"""Scale the data in the channel to implement equalize."""
im = tf.cast(im[:, :, c], tf.int32)
# Compute the histogram of the image channel.
histo = tf.histogram_fixed_width(im, [0, 255], nbins=256)
# For the purposes of computing the step, filter out the nonzeros.
nonzero = tf.where(tf.not_equal(histo, 0))
nonzero_histo = tf.reshape(tf.gather(histo, nonzero), [-1])
step = (tf.reduce_sum(nonzero_histo) - nonzero_histo[-1]) // 255
def build_lut(histo, step):
# Compute the cumulative sum, shifting by step // 2
# and then normalization by step.
lut = (tf.cumsum(histo) + (step // 2)) // step
# Shift lut, prepending with 0.
lut = tf.concat([[0], lut[:-1]], 0)
# Clip the counts to be in range. This is done
# in the C code for image.point.
return tf.clip_by_value(lut, 0, 255)
# If step is zero, return the original image. Otherwise, build
# lut from the full histogram and step and then index from it.
result = tf.cond(tf.equal(step, 0),
lambda: im,
lambda: tf.gather(build_lut(histo, step), im))
return tf.cast(result, tf.uint8)
# Assumes RGB for now. Scales each channel independently
# and then stacks the result.
s1 = scale_channel(image, 0)
s2 = scale_channel(image, 1)
s3 = scale_channel(image, 2)
image = tf.stack([s1, s2, s3], 2)
return image
示例5: test_empty_input_gives_all_zero_counts
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import histogram_fixed_width [as 別名]
def test_empty_input_gives_all_zero_counts(self):
# Bins will be:
# (-inf, 1), [1, 2), [2, 3), [3, 4), [4, inf)
value_range = [0.0, 5.0]
values = []
expected_bin_counts = [0, 0, 0, 0, 0]
with self.test_session():
hist = tf.histogram_fixed_width(values, value_range, nbins=5)
# Hist should start "fresh" with every eval.
self.assertAllClose(expected_bin_counts, hist.eval())
self.assertAllClose(expected_bin_counts, hist.eval())
示例6: test_one_update_on_constant_input
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import histogram_fixed_width [as 別名]
def test_one_update_on_constant_input(self):
# Bins will be:
# (-inf, 1), [1, 2), [2, 3), [3, 4), [4, inf)
value_range = [0.0, 5.0]
values = [-1.0, 0.0, 1.5, 2.0, 5.0, 15]
expected_bin_counts = [2, 1, 1, 0, 2]
with self.test_session():
hist = tf.histogram_fixed_width(values, value_range, nbins=5)
# Hist should start "fresh" with every eval.
self.assertAllClose(expected_bin_counts, hist.eval())
self.assertAllClose(expected_bin_counts, hist.eval())
示例7: test_one_update_on_constant_2d_input
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import histogram_fixed_width [as 別名]
def test_one_update_on_constant_2d_input(self):
# Bins will be:
# (-inf, 1), [1, 2), [2, 3), [3, 4), [4, inf)
value_range = [0.0, 5.0]
values = [[-1.0, 0.0, 1.5], [2.0, 5.0, 15]]
expected_bin_counts = [2, 1, 1, 0, 2]
with self.test_session():
hist = tf.histogram_fixed_width(values, value_range, nbins=5)
# Hist should start "fresh" with every eval.
self.assertAllClose(expected_bin_counts, hist.eval())
self.assertAllClose(expected_bin_counts, hist.eval())
示例8: contrast
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import histogram_fixed_width [as 別名]
def contrast(image: tf.Tensor, factor: float) -> tf.Tensor:
"""Equivalent of PIL Contrast."""
degenerate = tf.image.rgb_to_grayscale(image)
# Cast before calling tf.histogram.
degenerate = tf.cast(degenerate, tf.int32)
# Compute the grayscale histogram, then compute the mean pixel value,
# and create a constant image size of that value. Use that as the
# blending degenerate target of the original image.
hist = tf.histogram_fixed_width(degenerate, [0, 255], nbins=256)
mean = tf.reduce_sum(tf.cast(hist, tf.float32)) / 256.0
degenerate = tf.ones_like(degenerate, dtype=tf.float32) * mean
degenerate = tf.clip_by_value(degenerate, 0.0, 255.0)
degenerate = tf.image.grayscale_to_rgb(tf.cast(degenerate, tf.uint8))
return blend(degenerate, image, factor)
示例9: equalize
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import histogram_fixed_width [as 別名]
def equalize(image: tf.Tensor) -> tf.Tensor:
"""Implements Equalize function from PIL using TF ops."""
def scale_channel(im, c):
"""Scale the data in the channel to implement equalize."""
im = tf.cast(im[:, :, c], tf.int32)
# Compute the histogram of the image channel.
histo = tf.histogram_fixed_width(im, [0, 255], nbins=256)
# For the purposes of computing the step, filter out the nonzeros.
nonzero = tf.where(tf.not_equal(histo, 0))
nonzero_histo = tf.reshape(tf.gather(histo, nonzero), [-1])
step = (tf.reduce_sum(nonzero_histo) - nonzero_histo[-1]) // 255
def build_lut(histo, step):
# Compute the cumulative sum, shifting by step // 2
# and then normalization by step.
lut = (tf.cumsum(histo) + (step // 2)) // step
# Shift lut, prepending with 0.
lut = tf.concat([[0], lut[:-1]], 0)
# Clip the counts to be in range. This is done
# in the C code for image.point.
return tf.clip_by_value(lut, 0, 255)
# If step is zero, return the original image. Otherwise, build
# lut from the full histogram and step and then index from it.
result = tf.cond(tf.equal(step, 0),
lambda: im,
lambda: tf.gather(build_lut(histo, step), im))
return tf.cast(result, tf.uint8)
# Assumes RGB for now. Scales each channel independently
# and then stacks the result.
s1 = scale_channel(image, 0)
s2 = scale_channel(image, 1)
s3 = scale_channel(image, 2)
image = tf.stack([s1, s2, s3], 2)
return image
示例10: histogram
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import histogram_fixed_width [as 別名]
def histogram(x, nbins):
"""Returns the Tensor containing the nbins values of the normalized histogram of x"""
h = tf.histogram_fixed_width(x, value_range = [-1.0,1.0],
nbins = nbins, dtype = tf.float32)
return(h)
示例11: histogram
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import histogram_fixed_width [as 別名]
def histogram(tensor, value_range=[0.0, 1.0], nbins=100):
"""Return histogram of tensor"""
h, w, c = tensor.shape
hist = tf.histogram_fixed_width(tensor, value_range, nbins=nbins)
hist = tf.divide(hist, h * w * c)
return hist
示例12: equalize_image
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import histogram_fixed_width [as 別名]
def equalize_image(image: TensorLike, data_format: str = "channels_last") -> tf.Tensor:
"""Implements Equalize function from PIL using TF ops."""
@tf.function
def scale_channel(image, channel):
"""Scale the data in the channel to implement equalize."""
image_dtype = image.dtype
if data_format == "channels_last":
image = tf.cast(image[:, :, channel], tf.int32)
elif data_format == "channels_first":
image = tf.cast(image[channel], tf.int32)
else:
raise ValueError(
"data_format can either be channels_last or channels_first"
)
# Compute the histogram of the image channel.
histo = tf.histogram_fixed_width(image, [0, 255], nbins=256)
# For the purposes of computing the step, filter out the nonzeros.
nonzero = tf.where(tf.not_equal(histo, 0))
nonzero_histo = tf.reshape(tf.gather(histo, nonzero), [-1])
step = (tf.reduce_sum(nonzero_histo) - nonzero_histo[-1]) // 255
def build_lut(histo, step):
# Compute the cumulative sum, shifting by step // 2
# and then normalization by step.
lut = (tf.cumsum(histo) + (step // 2)) // step
# Shift lut, prepending with 0.
lut = tf.concat([[0], lut[:-1]], 0)
# Clip the counts to be in range. This is done
# in the C code for image.point.
return tf.clip_by_value(lut, 0, 255)
# If step is zero, return the original image. Otherwise, build
# lut from the full histogram and step and then index from it.
if step == 0:
result = image
else:
result = tf.gather(build_lut(histo, step), image)
return tf.cast(result, image_dtype)
idx = 2 if data_format == "channels_last" else 0
image = tf.stack([scale_channel(image, c) for c in range(image.shape[idx])], idx)
return image