當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.group方法代碼示例

本文整理匯總了Python中tensorflow.group方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.group方法的具體用法?Python tensorflow.group怎麽用?Python tensorflow.group使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.group方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_adam

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import group [as 別名]
def test_adam(self):
        with self.test_session() as sess:
            w = tf.get_variable(
                "w",
                shape=[3],
                initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
            x = tf.constant([0.4, 0.2, -0.5])
            loss = tf.reduce_mean(tf.square(x - w))
            tvars = tf.trainable_variables()
            grads = tf.gradients(loss, tvars)
            global_step = tf.train.get_or_create_global_step()
            optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
            train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
            init_op = tf.group(tf.global_variables_initializer(),
                               tf.local_variables_initializer())
            sess.run(init_op)
            for _ in range(100):
                sess.run(train_op)
            w_np = sess.run(w)
            self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2) 
開發者ID:Socialbird-AILab,項目名稱:BERT-Classification-Tutorial,代碼行數:22,代碼來源:optimization_test.py

示例2: make_update_op

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import group [as 別名]
def make_update_op(self, upd_idxs, upd_keys, upd_vals,
                     batch_size, use_recent_idx, intended_output):
    """Function that creates all the update ops."""
    mem_age_incr = self.mem_age.assign_add(tf.ones([self.memory_size],
                                                   dtype=tf.float32))
    with tf.control_dependencies([mem_age_incr]):
      mem_age_upd = tf.scatter_update(
          self.mem_age, upd_idxs, tf.zeros([batch_size], dtype=tf.float32))

    mem_key_upd = tf.scatter_update(
        self.mem_keys, upd_idxs, upd_keys)
    mem_val_upd = tf.scatter_update(
        self.mem_vals, upd_idxs, upd_vals)

    if use_recent_idx:
      recent_idx_upd = tf.scatter_update(
          self.recent_idx, intended_output, upd_idxs)
    else:
      recent_idx_upd = tf.group()

    return tf.group(mem_age_upd, mem_key_upd, mem_val_upd, recent_idx_upd) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:23,代碼來源:memory.py

示例3: _build_train_op

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import group [as 別名]
def _build_train_op(self):
    """Build training specific ops for the graph."""
    self.lrn_rate = tf.constant(self.hps.lrn_rate, tf.float32)
    tf.summary.scalar('learning_rate', self.lrn_rate)

    trainable_variables = tf.trainable_variables()
    grads = tf.gradients(self.cost, trainable_variables)

    if self.hps.optimizer == 'sgd':
      optimizer = tf.train.GradientDescentOptimizer(self.lrn_rate)
    elif self.hps.optimizer == 'mom':
      optimizer = tf.train.MomentumOptimizer(self.lrn_rate, 0.9)

    apply_op = optimizer.apply_gradients(
        zip(grads, trainable_variables),
        global_step=self.global_step, name='train_step')

    train_ops = [apply_op] + self._extra_train_ops
    self.train_op = tf.group(*train_ops)

  # TODO(xpan): Consider batch_norm in contrib/layers/python/layers/layers.py 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:23,代碼來源:resnet_model.py

示例4: reinit_nested_vars

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import group [as 別名]
def reinit_nested_vars(variables, indices=None):
  """Reset all variables in a nested tuple to zeros.

  Args:
    variables: Nested tuple or list of variaables.
    indices: Indices along the first dimension to reset, defaults to all.

  Returns:
    Operation.
  """
  if isinstance(variables, (tuple, list)):
    return tf.group(*[
        reinit_nested_vars(variable, indices) for variable in variables])
  if indices is None:
    return variables.assign(tf.zeros_like(variables))
  else:
    zeros = tf.zeros([tf.shape(indices)[0]] + variables.shape[1:].as_list())
    return tf.scatter_update(variables, indices, zeros) 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:20,代碼來源:utility.py

示例5: simulate

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import group [as 別名]
def simulate(self, action):
    """Step the batch of environments.

    The results of the step can be accessed from the variables defined below.

    Args:
      action: Tensor holding the batch of actions to apply.

    Returns:
      Operation.
    """
    with tf.name_scope('environment/simulate'):
      if action.dtype in (tf.float16, tf.float32, tf.float64):
        action = tf.check_numerics(action, 'action')
      observ_dtype = self._parse_dtype(self._batch_env.observation_space)
      observ, reward, done = tf.py_func(
          lambda a: self._batch_env.step(a)[:3], [action],
          [observ_dtype, tf.float32, tf.bool], name='step')
      observ = tf.check_numerics(observ, 'observ')
      reward = tf.check_numerics(reward, 'reward')
      return tf.group(
          self._observ.assign(observ),
          self._action.assign(action),
          self._reward.assign(reward),
          self._done.assign(done)) 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:27,代碼來源:in_graph_batch_env.py

示例6: reinit_nested_vars

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import group [as 別名]
def reinit_nested_vars(variables, indices=None):
  """Reset all variables in a nested tuple to zeros.

  Args:
    variables: Nested tuple or list of variaables.
    indices: Batch indices to reset, defaults to all.

  Returns:
    Operation.
  """
  if isinstance(variables, (tuple, list)):
    return tf.group(*[
        reinit_nested_vars(variable, indices) for variable in variables])
  if indices is None:
    return variables.assign(tf.zeros_like(variables))
  else:
    zeros = tf.zeros([tf.shape(indices)[0]] + variables.shape[1:].as_list())
    return tf.scatter_update(variables, indices, zeros) 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:20,代碼來源:utility.py

示例7: assign_nested_vars

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import group [as 別名]
def assign_nested_vars(variables, tensors, indices=None):
  """Assign tensors to matching nested tuple of variables.

  Args:
    variables: Nested tuple or list of variables to update.
    tensors: Nested tuple or list of tensors to assign.
    indices: Batch indices to assign to; default to all.

  Returns:
    Operation.
  """
  if isinstance(variables, (tuple, list)):
    return tf.group(*[
        assign_nested_vars(variable, tensor)
        for variable, tensor in zip(variables, tensors)])
  if indices is None:
    return variables.assign(tensors)
  else:
    return tf.scatter_update(variables, indices, tensors) 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:21,代碼來源:utility.py

示例8: _apply_cond

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import group [as 別名]
def _apply_cond(self, apply_fn, grad, var, *args, **kwargs):
    """Apply conditionally if counter is zero."""
    grad_acc = self.get_slot(var, "grad_acc")

    def apply_adam(grad_acc, apply_fn, grad, var, *args, **kwargs):
      total_grad = (grad_acc + grad) / tf.cast(self._n_t, grad.dtype)
      adam_op = apply_fn(total_grad, var, *args, **kwargs)
      with tf.control_dependencies([adam_op]):
        grad_acc_to_zero_op = grad_acc.assign(tf.zeros_like(grad_acc),
                                              use_locking=self._use_locking)
      return tf.group(adam_op, grad_acc_to_zero_op)

    def accumulate_gradient(grad_acc, grad):
      assign_op = tf.assign_add(grad_acc, grad, use_locking=self._use_locking)
      return tf.group(assign_op)  # Strip return value

    return tf.cond(
        tf.equal(self._get_iter_variable(), 0),
        lambda: apply_adam(grad_acc, apply_fn, grad, var, *args, **kwargs),
        lambda: accumulate_gradient(grad_acc, grad)) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:22,代碼來源:multistep_optimizer.py

示例9: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import group [as 別名]
def __init__(self, epsilon=1e-4, shape=(), scope=''):
        sess = get_session()

        self._new_mean = tf.placeholder(shape=shape, dtype=tf.float64)
        self._new_var = tf.placeholder(shape=shape, dtype=tf.float64)
        self._new_count = tf.placeholder(shape=(), dtype=tf.float64)

        
        with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
            self._mean  = tf.get_variable('mean',  initializer=np.zeros(shape, 'float64'),      dtype=tf.float64)
            self._var   = tf.get_variable('std',   initializer=np.ones(shape, 'float64'),       dtype=tf.float64)    
            self._count = tf.get_variable('count', initializer=np.full((), epsilon, 'float64'), dtype=tf.float64)

        self.update_ops = tf.group([
            self._var.assign(self._new_var),
            self._mean.assign(self._new_mean),
            self._count.assign(self._new_count)
        ])

        sess.run(tf.variables_initializer([self._mean, self._var, self._count]))
        self.sess = sess
        self._set_mean_var_count() 
開發者ID:MaxSobolMark,項目名稱:HardRLWithYoutube,代碼行數:24,代碼來源:running_mean_std.py

示例10: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import group [as 別名]
def __init__(self, *args, **kwargs):
        self.args, self.kwargs = args, kwargs
        self.scope = self._initialize(*args, **kwargs)
        self.all_variables = tf.get_collection(tf.GraphKeys.VARIABLES, self.scope.name)

        self.trainable_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.scope.name)
        self.num_params = sum(int(np.prod(v.get_shape().as_list())) for v in self.trainable_variables)
        self._setfromflat = U.SetFromFlat(self.trainable_variables)
        self._getflat = U.GetFlat(self.trainable_variables)

        logger.info('Trainable variables ({} parameters)'.format(self.num_params))
        for v in self.trainable_variables:
            shp = v.get_shape().as_list()
            logger.info('- {} shape:{} size:{}'.format(v.name, shp, np.prod(shp)))
        logger.info('All variables')
        for v in self.all_variables:
            shp = v.get_shape().as_list()
            logger.info('- {} shape:{} size:{}'.format(v.name, shp, np.prod(shp)))

        placeholders = [tf.placeholder(v.value().dtype, v.get_shape().as_list()) for v in self.all_variables]
        self.set_all_vars = U.function(
            inputs=placeholders,
            outputs=[],
            updates=[tf.group(*[v.assign(p) for v, p in zip(self.all_variables, placeholders)])]
        ) 
開發者ID:openai,項目名稱:evolution-strategies-starter,代碼行數:27,代碼來源:policies.py

示例11: init_agent

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import group [as 別名]
def init_agent(self):
        import tensorflow as tf
        env_opts = environments.get_env_options(self.env_name, self.env_producer.get_use_gpu())
        self.session = utils.create_session(env_opts, True)
        with tf.variable_scope("worker-%s" % self.idx):
            pol = get_policy(env_opts, self.session)
            self.agent = PPOAgent(pol, self.session, "worker-%s" % self.idx, env_opts)
            self.trainable_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, "worker-%s" % self.idx)
            self.accum_vars = [tf.Variable(tf.zeros_like(tv.initialized_value()), trainable=False) for tv in
                               self.trainable_vars]
            p_vars = self.agent.p_opt.variables()
            v_vars = self.agent.v_opt.variables()
            self.p_opt_vars = [tf.Variable(tf.zeros_like(tv.initialized_value()), trainable=False) for tv in p_vars]
            self.v_opt_vars = [tf.Variable(tf.zeros_like(tv.initialized_value()), trainable=False) for tv in v_vars]
            p_assign_ops = [p_vars[i].assign(self.p_opt_vars[i]) for i in range(len(p_vars))]
            v_assign_ops = [v_vars[i].assign(self.v_opt_vars[i]) for i in range(len(v_vars))]

            assign_ops = [self.trainable_vars[i].assign(self.accum_vars[i]) for i in
                          range(len(self.trainable_vars))]
            self.assign_op = tf.group(assign_ops + p_assign_ops + v_assign_ops)

        self.session.run(tf.global_variables_initializer())
        self.run() 
開發者ID:jet-black,項目名稱:ppo-lstm-parallel,代碼行數:25,代碼來源:worker.py

示例12: init

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import group [as 別名]
def init(self):
        import tensorflow as tf
        self.env_opts = environments.get_env_options(self.env_name, self.env_producer.get_use_gpu())
        self.env = self.env_producer.get_new_environment()
        self.s0 = self.env.reset()
        self.session = utils.create_session(self.env_opts, False)
        with tf.device("/cpu:0"):
            with tf.variable_scope("gather-%s" % self.idx):
                pol = get_policy(self.env_opts, self.session)
                self.agent = PPOAgent(pol, self.session, "gather-%s" % self.idx, self.env_opts)
                self.trainable_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, "gather-%s" % self.idx)
                self.accum_vars = [tf.Variable(tf.zeros_like(tv.initialized_value()), trainable=False) for tv in
                                   self.trainable_vars]
                assign_ops = [self.trainable_vars[i].assign(self.accum_vars[i]) for i in
                              range(len(self.trainable_vars))]
                self.assign_op = tf.group(assign_ops)
            self.session.run(tf.global_variables_initializer())
            self.cur_hidden_state = self.agent.get_init_hidden_state()
            self.episode = [self.s0], [], [], [], [], [self.cur_hidden_state], [] 
開發者ID:jet-black,項目名稱:ppo-lstm-parallel,代碼行數:21,代碼來源:gather.py

示例13: get_value_updater

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import group [as 別名]
def get_value_updater(self, data, new_mean, gamma_weighted, gamma_sum):
        tf_new_differences = tf.subtract(data, tf.expand_dims(new_mean, 0))
        tf_sq_dist_matrix = tf.matmul(tf.expand_dims(tf_new_differences, 2), tf.expand_dims(tf_new_differences, 1))
        tf_new_covariance = tf.reduce_sum(tf_sq_dist_matrix * tf.expand_dims(tf.expand_dims(gamma_weighted, 1), 2), 0)

        if self.has_prior:
            tf_new_covariance = self.get_prior_adjustment(tf_new_covariance, gamma_sum)

        tf_s, tf_u, _ = tf.svd(tf_new_covariance)

        tf_required_eigvals = tf_s[:self.rank]
        tf_required_eigvecs = tf_u[:, :self.rank]

        tf_new_baseline = (tf.trace(tf_new_covariance) - tf.reduce_sum(tf_required_eigvals)) / self.tf_rest
        tf_new_eigvals = tf_required_eigvals - tf_new_baseline
        tf_new_eigvecs = tf.transpose(tf_required_eigvecs)

        return tf.group(
            self.tf_baseline.assign(tf_new_baseline),
            self.tf_eigvals.assign(tf_new_eigvals),
            self.tf_eigvecs.assign(tf_new_eigvecs)
        ) 
開發者ID:aakhundov,項目名稱:tf-example-models,代碼行數:24,代碼來源:sparse_covariance.py

示例14: export_model

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import group [as 別名]
def export_model(module_spec, class_count, saved_model_dir):
  """Exports model for serving.

  Args:
    module_spec: The hub.ModuleSpec for the image module being used.
    class_count: The number of classes.
    saved_model_dir: Directory in which to save exported model and variables.
  """
  # The SavedModel should hold the eval graph.
  sess, in_image, _, _, _, _ = build_eval_session(module_spec, class_count)
  with sess.graph.as_default() as graph:
    tf.saved_model.simple_save(
        sess,
        saved_model_dir,
        inputs={'image': in_image},
        outputs={'prediction': graph.get_tensor_by_name('final_result:0')},
        legacy_init_op=tf.group(tf.tables_initializer(), name='legacy_init_op')
    ) 
開發者ID:hthuwal,項目名稱:sign-language-gesture-recognition,代碼行數:20,代碼來源:retrain.py

示例15: build_train_op

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import group [as 別名]
def build_train_op(self, loss):
        if self.optim == 'adam':
            print 'Adam optimizer'
            v_dict = self.get_variables_by_name([""], True)
            var_list1 = [i for i in v_dict[""] if 'vis_enc' not in i.name]
            var_list2 = self.get_variables_by_name(["vis_enc"], True)
            var_list2 = var_list2["vis_enc"]

            opt1 = tf.train.AdamOptimizer(self.lr, name="Adam")
            opt2 = tf.train.AdamOptimizer(self.lr*0.1, name="Adam_vis_enc")
            grads = tf.gradients(loss, var_list1 + var_list2)
            grads1 = grads[:len(var_list1)]
            grads2 = grads[len(var_list1):]
            train_op1 = opt1.apply_gradients(zip(grads1, var_list1))
            train_op2 = opt2.apply_gradients(zip(grads2, var_list2))
            train_op = tf.group(train_op1, train_op2)            
        else:
            print 'SGD optimizer'
            tvars = tf.trainable_variables()
            optimizer = tf.train.GradientDescentOptimizer(self._lr)
            grads = tf.gradients(cost, tvars)
            train_op = optimizer.apply_gradients(zip(grads, tvars))
        return train_op 
開發者ID:kanchen-usc,項目名稱:GroundeR,代碼行數:25,代碼來源:model_unsupervise.py


注:本文中的tensorflow.group方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。