當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.greater方法代碼示例

本文整理匯總了Python中tensorflow.greater方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.greater方法的具體用法?Python tensorflow.greater怎麽用?Python tensorflow.greater使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.greater方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build_cross_entropy_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import greater [as 別名]
def build_cross_entropy_loss(logits, gold):
  """Constructs a cross entropy from logits and one-hot encoded gold labels.

  Supports skipping rows where the gold label is the magic -1 value.

  Args:
    logits: float Tensor of scores.
    gold: int Tensor of one-hot labels.

  Returns:
    cost, correct, total: the total cost, the total number of correctly
        predicted labels, and the total number of valid labels.
  """
  valid = tf.reshape(tf.where(tf.greater(gold, -1)), [-1])
  gold = tf.gather(gold, valid)
  logits = tf.gather(logits, valid)
  correct = tf.reduce_sum(tf.to_int32(tf.nn.in_top_k(logits, gold, 1)))
  total = tf.size(gold)
  cost = tf.reduce_sum(
      tf.contrib.nn.deprecated_flipped_sparse_softmax_cross_entropy_with_logits(
          logits, tf.cast(gold, tf.int64))) / tf.cast(total, tf.float32)
  return cost, correct, total 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:24,代碼來源:bulk_component.py

示例2: retain_groundtruth_with_positive_classes

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import greater [as 別名]
def retain_groundtruth_with_positive_classes(tensor_dict):
  """Retains only groundtruth with positive class ids.

  Args:
    tensor_dict: a dictionary of following groundtruth tensors -
      fields.InputDataFields.groundtruth_boxes
      fields.InputDataFields.groundtruth_classes
      fields.InputDataFields.groundtruth_is_crowd
      fields.InputDataFields.groundtruth_area
      fields.InputDataFields.groundtruth_label_types
      fields.InputDataFields.groundtruth_difficult

  Returns:
    a dictionary of tensors containing only the groundtruth with positive
    classes.

  Raises:
    ValueError: If groundtruth_classes tensor is not in tensor_dict.
  """
  if fields.InputDataFields.groundtruth_classes not in tensor_dict:
    raise ValueError('`groundtruth classes` not in tensor_dict.')
  keep_indices = tf.where(tf.greater(
      tensor_dict[fields.InputDataFields.groundtruth_classes], 0))
  return retain_groundtruth(tensor_dict, keep_indices) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:26,代碼來源:ops.py

示例3: pad_tensor

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import greater [as 別名]
def pad_tensor(t, length):
  """Pads the input tensor with 0s along the first dimension up to the length.

  Args:
    t: the input tensor, assuming the rank is at least 1.
    length: a tensor of shape [1]  or an integer, indicating the first dimension
      of the input tensor t after padding, assuming length <= t.shape[0].

  Returns:
    padded_t: the padded tensor, whose first dimension is length. If the length
      is an integer, the first dimension of padded_t is set to length
      statically.
  """
  t_rank = tf.rank(t)
  t_shape = tf.shape(t)
  t_d0 = t_shape[0]
  pad_d0 = tf.expand_dims(length - t_d0, 0)
  pad_shape = tf.cond(
      tf.greater(t_rank, 1), lambda: tf.concat([pad_d0, t_shape[1:]], 0),
      lambda: tf.expand_dims(length - t_d0, 0))
  padded_t = tf.concat([t, tf.zeros(pad_shape, dtype=t.dtype)], 0)
  if not _is_tensor(length):
    padded_t = _set_dim_0(padded_t, length)
  return padded_t 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:26,代碼來源:shape_utils.py

示例4: pad_or_clip_tensor

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import greater [as 別名]
def pad_or_clip_tensor(t, length):
  """Pad or clip the input tensor along the first dimension.

  Args:
    t: the input tensor, assuming the rank is at least 1.
    length: a tensor of shape [1]  or an integer, indicating the first dimension
      of the input tensor t after processing.

  Returns:
    processed_t: the processed tensor, whose first dimension is length. If the
      length is an integer, the first dimension of the processed tensor is set
      to length statically.
  """
  processed_t = tf.cond(
      tf.greater(tf.shape(t)[0], length),
      lambda: clip_tensor(t, length),
      lambda: pad_tensor(t, length))
  if not _is_tensor(length):
    processed_t = _set_dim_0(processed_t, length)
  return processed_t 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:22,代碼來源:shape_utils.py

示例5: _padded_batched_proposals_indicator

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import greater [as 別名]
def _padded_batched_proposals_indicator(self,
                                          num_proposals,
                                          max_num_proposals):
    """Creates indicator matrix of non-pad elements of padded batch proposals.

    Args:
      num_proposals: Tensor of type tf.int32 with shape [batch_size].
      max_num_proposals: Maximum number of proposals per image (integer).

    Returns:
      A Tensor of type tf.bool with shape [batch_size, max_num_proposals].
    """
    batch_size = tf.size(num_proposals)
    tiled_num_proposals = tf.tile(
        tf.expand_dims(num_proposals, 1), [1, max_num_proposals])
    tiled_proposal_index = tf.tile(
        tf.expand_dims(tf.range(max_num_proposals), 0), [batch_size, 1])
    return tf.greater(tiled_num_proposals, tiled_proposal_index) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:20,代碼來源:faster_rcnn_meta_arch.py

示例6: test_visualize_boxes_in_image

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import greater [as 別名]
def test_visualize_boxes_in_image(self):
    image = tf.zeros((6, 4, 3))
    corners = tf.constant([[0, 0, 5, 3],
                           [0, 0, 3, 2]], tf.float32)
    boxes = box_list.BoxList(corners)
    image_and_boxes = box_list_ops.visualize_boxes_in_image(image, boxes)
    image_and_boxes_bw = tf.to_float(
        tf.greater(tf.reduce_sum(image_and_boxes, 2), 0.0))
    exp_result = [[1, 1, 1, 0],
                  [1, 1, 1, 0],
                  [1, 1, 1, 0],
                  [1, 0, 1, 0],
                  [1, 1, 1, 0],
                  [0, 0, 0, 0]]
    with self.test_session() as sess:
      output = sess.run(image_and_boxes_bw)
      self.assertAllEqual(output.astype(int), exp_result) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:19,代碼來源:box_list_ops_test.py

示例7: filter_groundtruth_with_nan_box_coordinates

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import greater [as 別名]
def filter_groundtruth_with_nan_box_coordinates(tensor_dict):
  """Filters out groundtruth with no bounding boxes.

  Args:
    tensor_dict: a dictionary of following groundtruth tensors -
      fields.InputDataFields.groundtruth_boxes
      fields.InputDataFields.groundtruth_classes
      fields.InputDataFields.groundtruth_is_crowd
      fields.InputDataFields.groundtruth_area
      fields.InputDataFields.groundtruth_label_types

  Returns:
    a dictionary of tensors containing only the groundtruth that have bounding
    boxes.
  """
  groundtruth_boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]
  nan_indicator_vector = tf.greater(tf.reduce_sum(tf.to_int32(
      tf.is_nan(groundtruth_boxes)), reduction_indices=[1]), 0)
  valid_indicator_vector = tf.logical_not(nan_indicator_vector)
  valid_indices = tf.where(valid_indicator_vector)

  return retain_groundtruth(tensor_dict, valid_indices) 
開發者ID:datitran,項目名稱:object_detector_app,代碼行數:24,代碼來源:ops.py

示例8: test_gather_with_dynamic_indexing

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import greater [as 別名]
def test_gather_with_dynamic_indexing(self):
    corners = tf.constant([4 * [0.0], 4 * [1.0], 4 * [2.0], 4 * [3.0], 4 * [4.0]
                          ])
    weights = tf.constant([.5, .3, .7, .1, .9], tf.float32)
    indices = tf.reshape(tf.where(tf.greater(weights, 0.4)), [-1])
    expected_subset = [4 * [0.0], 4 * [2.0], 4 * [4.0]]
    expected_weights = [.5, .7, .9]

    boxes = box_list.BoxList(corners)
    boxes.add_field('weights', weights)
    subset = box_list_ops.gather(boxes, indices, ['weights'])
    with self.test_session() as sess:
      subset_output, weights_output = sess.run([subset.get(), subset.get_field(
          'weights')])
      self.assertAllClose(subset_output, expected_subset)
      self.assertAllClose(weights_output, expected_weights) 
開發者ID:datitran,項目名稱:object_detector_app,代碼行數:18,代碼來源:box_list_ops_test.py

示例9: _reshape_instance_masks

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import greater [as 別名]
def _reshape_instance_masks(self, keys_to_tensors):
    """Reshape instance segmentation masks.

    The instance segmentation masks are reshaped to [num_instances, height,
    width].

    Args:
      keys_to_tensors: a dictionary from keys to tensors.

    Returns:
      A 3-D float tensor of shape [num_instances, height, width] with values
        in {0, 1}.
    """
    height = keys_to_tensors['image/height']
    width = keys_to_tensors['image/width']
    to_shape = tf.cast(tf.stack([-1, height, width]), tf.int32)
    masks = keys_to_tensors['image/object/mask']
    if isinstance(masks, tf.SparseTensor):
      masks = tf.sparse_tensor_to_dense(masks)
    masks = tf.reshape(tf.to_float(tf.greater(masks, 0.0)), to_shape)
    return tf.cast(masks, tf.float32) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:23,代碼來源:tf_example_decoder.py

示例10: filter_groundtruth_with_nan_box_coordinates

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import greater [as 別名]
def filter_groundtruth_with_nan_box_coordinates(tensor_dict):
  """Filters out groundtruth with no bounding boxes.

  Args:
    tensor_dict: a dictionary of following groundtruth tensors -
      fields.InputDataFields.groundtruth_boxes
      fields.InputDataFields.groundtruth_classes
      fields.InputDataFields.groundtruth_keypoints
      fields.InputDataFields.groundtruth_instance_masks
      fields.InputDataFields.groundtruth_is_crowd
      fields.InputDataFields.groundtruth_area
      fields.InputDataFields.groundtruth_label_types

  Returns:
    a dictionary of tensors containing only the groundtruth that have bounding
    boxes.
  """
  groundtruth_boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]
  nan_indicator_vector = tf.greater(tf.reduce_sum(tf.to_int32(
      tf.is_nan(groundtruth_boxes)), reduction_indices=[1]), 0)
  valid_indicator_vector = tf.logical_not(nan_indicator_vector)
  valid_indices = tf.where(valid_indicator_vector)

  return retain_groundtruth(tensor_dict, valid_indices) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:26,代碼來源:ops.py

示例11: _get_refined_encodings_for_postitive_class

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import greater [as 別名]
def _get_refined_encodings_for_postitive_class(
      self, refined_box_encodings, flat_cls_targets_with_background,
      batch_size):
    # We only predict refined location encodings for the non background
    # classes, but we now pad it to make it compatible with the class
    # predictions
    refined_box_encodings_with_background = tf.pad(refined_box_encodings,
                                                   [[0, 0], [1, 0], [0, 0]])
    refined_box_encodings_masked_by_class_targets = (
        box_list_ops.boolean_mask(
            box_list.BoxList(
                tf.reshape(refined_box_encodings_with_background,
                           [-1, self._box_coder.code_size])),
            tf.reshape(tf.greater(flat_cls_targets_with_background, 0), [-1]),
            use_static_shapes=self._use_static_shapes,
            indicator_sum=batch_size * self.max_num_proposals
            if self._use_static_shapes else None).get())
    return tf.reshape(
        refined_box_encodings_masked_by_class_targets, [
            batch_size, self.max_num_proposals,
            self._box_coder.code_size
        ]) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:24,代碼來源:faster_rcnn_meta_arch.py

示例12: mode

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import greater [as 別名]
def mode(cls, parameters: Dict[str, Tensor]) -> Tensor:
        mu = parameters["mu"]
        tau = parameters["tau"]
        nu = parameters["nu"]
        beta = parameters["beta"]

        lam = 1./beta
        mode = tf.zeros_like(mu) * tf.zeros_like(mu)
        mode = tf.where(tf.logical_and(tf.greater(nu, mu),
                                       tf.less(mu+lam/tau, nu)),
                        mu+lam/tau,
                        mode)
        mode = tf.where(tf.logical_and(tf.greater(nu, mu),
                                       tf.greater_equal(mu+lam/tau, nu)),
                        nu,
                        mode)
        mode = tf.where(tf.logical_and(tf.less_equal(nu, mu),
                                       tf.greater(mu-lam/tau, nu)),
                        mu-lam/tau,
                        mode)
        mode = tf.where(tf.logical_and(tf.less_equal(nu, mu),
                                       tf.less_equal(mu-lam/tau, nu)),
                        nu,
                        mode)
        return(mode) 
開發者ID:bethgelab,項目名稱:decompose,代碼行數:27,代碼來源:jumpNormalAlgorithms.py

示例13: _filter_input_rows

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import greater [as 別名]
def _filter_input_rows(self, *row_parts) -> tf.bool:
        row_parts = self.model_input_tensors_former.from_model_input_form(row_parts)

        #assert all(tensor.shape == (self.config.MAX_CONTEXTS,) for tensor in
        #           {row_parts.path_source_token_indices, row_parts.path_indices,
        #            row_parts.path_target_token_indices, row_parts.context_valid_mask})

        # FIXME: Does "valid" here mean just "no padding" or "neither padding nor OOV"? I assumed just "no padding".
        any_word_valid_mask_per_context_part = [
            tf.not_equal(tf.reduce_max(row_parts.path_source_token_indices, axis=0),
                         self.vocabs.token_vocab.word_to_index[self.vocabs.token_vocab.special_words.PAD]),
            tf.not_equal(tf.reduce_max(row_parts.path_target_token_indices, axis=0),
                         self.vocabs.token_vocab.word_to_index[self.vocabs.token_vocab.special_words.PAD]),
            tf.not_equal(tf.reduce_max(row_parts.path_indices, axis=0),
                         self.vocabs.path_vocab.word_to_index[self.vocabs.path_vocab.special_words.PAD])]
        any_contexts_is_valid = reduce(tf.logical_or, any_word_valid_mask_per_context_part)  # scalar

        if self.estimator_action.is_evaluate:
            cond = any_contexts_is_valid  # scalar
        else:  # training
            word_is_valid = tf.greater(
                row_parts.target_index, self.vocabs.target_vocab.word_to_index[self.vocabs.target_vocab.special_words.OOV])  # scalar
            cond = tf.logical_and(word_is_valid, any_contexts_is_valid)  # scalar

        return cond  # scalar 
開發者ID:tech-srl,項目名稱:code2vec,代碼行數:27,代碼來源:path_context_reader.py

示例14: smooth_l1_loss_rpn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import greater [as 別名]
def smooth_l1_loss_rpn(bbox_pred, bbox_targets, label, sigma=1.0):
    '''

    :param bbox_pred: [-1, 4]
    :param bbox_targets: [-1, 4]
    :param label: [-1]
    :param sigma:
    :return:
    '''
    value = _smooth_l1_loss_base(bbox_pred, bbox_targets, sigma=sigma)

    value = tf.reduce_sum(value, axis=1)  # to sum in axis 1

    # rpn_select = tf.reshape(tf.where(tf.greater_equal(label, 0)), [-1])
    rpn_select = tf.where(tf.greater(label, 0))

    # rpn_select = tf.stop_gradient(rpn_select) # to avoid
    selected_value = tf.gather(value, rpn_select)

    non_ignored_mask = tf.stop_gradient(
        1.0 - tf.to_float(tf.equal(label, -1)))  # positve is 1.0 others is 0.0

    bbox_loss = tf.reduce_sum(selected_value) / tf.maximum(1.0, tf.reduce_sum(non_ignored_mask))

    return bbox_loss 
開發者ID:DetectionTeamUCAS,項目名稱:R2CNN_Faster-RCNN_Tensorflow,代碼行數:27,代碼來源:losses.py

示例15: apply_mask

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import greater [as 別名]
def apply_mask(gan, config, net,x=None):
    if x == None:
        x = gan.inputs.x
    filtered = net
    shape = gan.ops.shape(x)
    mask = tf.ones([shape[1], shape[2], shape[3]])
    mask = tf.greater(mask, 0)
    scaling = 0.6
    mask = tf.image.central_crop(mask, scaling)
    left = (shape[1]*scaling)//2 * 0.75
    top = (shape[2]*scaling)//2 * 0.75
    mask = tf.image.pad_to_bounding_box(mask, int(top), int(left), shape[1], shape[2])
    mask = tf.cast(mask, tf.float32)
    backmask = (1.0-mask) 
    filtered = backmask* x + mask * filtered
    print("FRAMING IMAGE", filtered) 
    return filtered 
開發者ID:HyperGAN,項目名稱:HyperGAN,代碼行數:19,代碼來源:colorizer.py


注:本文中的tensorflow.greater方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。