當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.graph方法代碼示例

本文整理匯總了Python中tensorflow.graph方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.graph方法的具體用法?Python tensorflow.graph怎麽用?Python tensorflow.graph使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.graph方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: conv2d

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import graph [as 別名]
def conv2d(name, x, w=None, num_filters=16, kernel_size=(3, 3), padding='SAME', stride=(1, 1),
           initializer=tf.contrib.layers.xavier_initializer(), l2_strength=0.0, bias=0.0,
           activation=None, batchnorm_enabled=False, max_pool_enabled=False, dropout_keep_prob=-1,
           is_training=True):
    """
    This block is responsible for a convolution 2D layer followed by optional (non-linearity, dropout, max-pooling).
    Note that: "is_training" should be passed by a correct value based on being in either training or testing.
    :param name: (string) The name scope provided by the upper tf.name_scope('name') as scope.
    :param x: (tf.tensor) The input to the layer (N, H, W, C).
    :param num_filters: (integer) No. of filters (This is the output depth)
    :param kernel_size: (integer tuple) The size of the convolving kernel.
    :param padding: (string) The amount of padding required.
    :param stride: (integer tuple) The stride required.
    :param initializer: (tf.contrib initializer) The initialization scheme, He et al. normal or Xavier normal are recommended.
    :param l2_strength:(weight decay) (float) L2 regularization parameter.
    :param bias: (float) Amount of bias.
    :param activation: (tf.graph operator) The activation function applied after the convolution operation. If None, linear is applied.
    :param batchnorm_enabled: (boolean) for enabling batch normalization.
    :param max_pool_enabled:  (boolean) for enabling max-pooling 2x2 to decrease width and height by a factor of 2.
    :param dropout_keep_prob: (float) for the probability of keeping neurons. If equals -1, it means no dropout
    :param is_training: (boolean) to diff. between training and testing (important for batch normalization and dropout)
    :return: The output tensor of the layer (N, H', W', C').
    """
    with tf.variable_scope(name) as scope:
        conv_o_b = __conv2d_p(scope, x=x, w=w, num_filters=num_filters, kernel_size=kernel_size, stride=stride,
                              padding=padding,
                              initializer=initializer, l2_strength=l2_strength, bias=bias)

        if batchnorm_enabled:
            conv_o_bn = tf.layers.batch_normalization(conv_o_b, training=is_training)
            if not activation:
                conv_a = conv_o_bn
            else:
                conv_a = activation(conv_o_bn)
        else:
            if not activation:
                conv_a = conv_o_b
            else:
                conv_a = activation(conv_o_b)

        def dropout_with_keep():
            return tf.nn.dropout(conv_a, dropout_keep_prob)

        def dropout_no_keep():
            return tf.nn.dropout(conv_a, 1.0)

        if dropout_keep_prob != -1:
            conv_o_dr = tf.cond(is_training, dropout_with_keep, dropout_no_keep)
        else:
            conv_o_dr = conv_a

        conv_o = conv_o_dr
        if max_pool_enabled:
            conv_o = max_pool_2d(conv_o_dr)

    return conv_o 
開發者ID:MG2033,項目名稱:MobileNet,代碼行數:58,代碼來源:layers.py

示例2: dense

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import graph [as 別名]
def dense(name, x, w=None, output_dim=128, initializer=tf.contrib.layers.xavier_initializer(), l2_strength=0.0,
          bias=0.0,
          activation=None, batchnorm_enabled=False, dropout_keep_prob=-1,
          is_training=True
          ):
    """
    This block is responsible for a fully connected followed by optional (non-linearity, dropout, max-pooling).
    Note that: "is_training" should be passed by a correct value based on being in either training or testing.
    :param name: (string) The name scope provided by the upper tf.name_scope('name') as scope.
    :param x: (tf.tensor) The input to the layer (N, D).
    :param output_dim: (integer) It specifies H, the output second dimension of the fully connected layer [ie:(N, H)]
    :param initializer: (tf.contrib initializer) The initialization scheme, He et al. normal or Xavier normal are recommended.
    :param l2_strength:(weight decay) (float) L2 regularization parameter.
    :param bias: (float) Amount of bias.
    :param activation: (tf.graph operator) The activation function applied after the convolution operation. If None, linear is applied.
    :param batchnorm_enabled: (boolean) for enabling batch normalization.
    :param dropout_keep_prob: (float) for the probability of keeping neurons. If equals -1, it means no dropout
    :param is_training: (boolean) to diff. between training and testing (important for batch normalization and dropout)
    :return out: The output of the layer. (N, H)
    """
    with tf.variable_scope(name) as scope:
        dense_o_b = __dense_p(name=scope, x=x, w=w, output_dim=output_dim, initializer=initializer,
                              l2_strength=l2_strength,
                              bias=bias)

        if batchnorm_enabled:
            dense_o_bn = tf.layers.batch_normalization(dense_o_b, training=is_training)
            if not activation:
                dense_a = dense_o_bn
            else:
                dense_a = activation(dense_o_bn)
        else:
            if not activation:
                dense_a = dense_o_b
            else:
                dense_a = activation(dense_o_b)

        def dropout_with_keep():
            return tf.nn.dropout(dense_a, dropout_keep_prob)

        def dropout_no_keep():
            return tf.nn.dropout(dense_a, 1.0)

        if dropout_keep_prob != -1:
            dense_o_dr = tf.cond(is_training, dropout_with_keep, dropout_no_keep)
        else:
            dense_o_dr = dense_a

        dense_o = dense_o_dr
    return dense_o 
開發者ID:MG2033,項目名稱:MobileNet,代碼行數:52,代碼來源:layers.py

示例3: conv2d

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import graph [as 別名]
def conv2d(name, x, w=None, num_filters=16, kernel_size=(3, 3), padding='SAME', stride=(1, 1),
           initializer=tf.contrib.layers.xavier_initializer(), l2_strength=0.0, bias=0.0,
           activation=None, batchnorm_enabled=False, max_pool_enabled=False, dropout_keep_prob=-1,
           is_training=True):
    """
    This block is responsible for a convolution 2D layer followed by optional (non-linearity, dropout, max-pooling).
    Note that: "is_training" should be passed by a correct value based on being in either training or testing.
    :param name: (string) The name scope provided by the upper tf.name_scope('name') as scope.
    :param x: (tf.tensor) The input to the layer (N, H, W, C).
    :param num_filters: (integer) No. of filters (This is the output depth)
    :param kernel_size: (integer tuple) The size of the convolving kernel.
    :param padding: (string) The amount of padding required.
    :param stride: (integer tuple) The stride required.
    :param initializer: (tf.contrib initializer) The initialization scheme, He et al. normal or Xavier normal are recommended.
    :param l2_strength:(weight decay) (float) L2 regularization parameter.
    :param bias: (float) Amount of bias.
    :param activation: (tf.graph operator) The activation function applied after the convolution operation. If None, linear is applied.
    :param batchnorm_enabled: (boolean) for enabling batch normalization.
    :param max_pool_enabled:  (boolean) for enabling max-pooling 2x2 to decrease width and height by a factor of 2.
    :param dropout_keep_prob: (float) for the probability of keeping neurons. If equals -1, it means no dropout
    :param is_training: (boolean) to diff. between training and testing (important for batch normalization and dropout)
    :return: The output tensor of the layer (N, H', W', C').
    """
    with tf.variable_scope(name) as scope:
        conv_o_b = conv2d_p(scope, x=x, w=w, num_filters=num_filters, kernel_size=kernel_size, stride=stride,
                            padding=padding,
                            initializer=initializer, l2_strength=l2_strength, bias=bias)

        if batchnorm_enabled:
            conv_o_bn = tf.layers.batch_normalization(conv_o_b, training=is_training)
            if not activation:
                conv_a = conv_o_bn
            else:
                conv_a = activation(conv_o_bn)
        else:
            if not activation:
                conv_a = conv_o_b
            else:
                conv_a = activation(conv_o_b)

        if dropout_keep_prob != -1:
            conv_o_dr = tf.nn.dropout(conv_a, dropout_keep_prob)
        else:
            conv_o_dr = conv_a

        conv_o = conv_o_dr
        if max_pool_enabled:
            conv_o = max_pool_2d(scope, conv_o_dr)

    return conv_o 
開發者ID:MG2033,項目名稱:A2C,代碼行數:52,代碼來源:layers.py

示例4: atrous_conv2d

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import graph [as 別名]
def atrous_conv2d(name, x, w=None, num_filters=16, kernel_size=(3, 3), padding='SAME', dilation_rate=1,
                  initializer=tf.contrib.layers.xavier_initializer(), l2_strength=0.0, bias=0.0,
                  activation=None, batchnorm_enabled=False, max_pool_enabled=False, dropout_keep_prob=-1,
                  is_training=True):
    """
    This block is responsible for a Dilated convolution 2D layer followed by optional (non-linearity, dropout, max-pooling).
    Note that: "is_training" should be passed by a correct value based on being in either training or testing.
    :param name: (string) The name scope provided by the upper tf.name_scope('name') as scope.
    :param x: (tf.tensor) The input to the layer (N, H, W, C).
    :param num_filters: (integer) No. of filters (This is the output depth)
    :param kernel_size: (integer tuple) The size of the convolving kernel.
    :param padding: (string) The amount of padding required.
    :param dilation_rate: (integer) The amount of dilation required. If equals 1, it means normal convolution.
    :param initializer: (tf.contrib initializer) The initialization scheme, He et al. normal or Xavier normal are recommended.
    :param l2_strength:(weight decay) (float) L2 regularization parameter.
    :param bias: (float) Amount of bias.
    :param activation: (tf.graph operator) The activation function applied after the convolution operation. If None, linear is applied.
    :param batchnorm_enabled: (boolean) for enabling batch normalization.
    :param max_pool_enabled:  (boolean) for enabling max-pooling 2x2 to decrease width and height by a factor of 2.
    :param dropout_keep_prob: (float) for the probability of keeping neurons. If equals -1, it means no dropout
    :param is_training: (boolean) to diff. between training and testing (important for batch normalization and dropout)
    :return: The output tensor of the layer (N, H', W', C').
    """
    with tf.variable_scope(name) as scope:
        conv_o_b = atrous_conv2d_p(scope, x=x, w=w, num_filters=num_filters, kernel_size=kernel_size,
                                   padding=padding, dilation_rate=dilation_rate,
                                   initializer=initializer, l2_strength=l2_strength, bias=bias)

        if batchnorm_enabled:
            conv_o_bn = tf.layers.batch_normalization(conv_o_b, training=is_training)
            if not activation:
                conv_a = conv_o_bn
            else:
                conv_a = activation(conv_o_bn)
        else:
            if not activation:
                conv_a = conv_o_b
            else:
                conv_a = activation(conv_o_b)

        if dropout_keep_prob != -1:
            conv_o_dr = tf.nn.dropout(conv_a, dropout_keep_prob)
        else:
            conv_o_dr = conv_a

        conv_o = conv_o_dr
        if max_pool_enabled:
            conv_o = max_pool_2d(scope, conv_o_dr)

    return conv_o 
開發者ID:MG2033,項目名稱:A2C,代碼行數:52,代碼來源:layers.py

示例5: conv2d_transpose

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import graph [as 別名]
def conv2d_transpose(name, x, w=None, output_shape=None, kernel_size=(3, 3), padding='SAME', stride=(1, 1),
                     l2_strength=0.0,
                     bias=0.0, activation=None, batchnorm_enabled=False, dropout_keep_prob=-1,
                     is_training=True):
    """
    This block is responsible for a convolution transpose 2D followed by optional (non-linearity, dropout, max-pooling).
    Note that: "is_training" should be passed by a correct value based on being in either training or testing.
    :param name: (string) The name scope provided by the upper tf.name_scope('name') as scope.
    :param x: (tf.tensor) The input to the layer (N, H, W, C).
    :param output_shape: (Array) [N, H', W', C'] The shape of the corresponding output.
    :param kernel_size: (integer tuple) The size of the convolving kernel.
    :param padding: (string) The amount of padding required.
    :param stride: (integer tuple) The stride required.
    :param l2_strength:(weight decay) (float) L2 regularization parameter.
    :param bias: (float) Amount of bias.
    :param activation: (tf.graph operator) The activation function applied after the convolution operation. If None, linear is applied.
    :param batchnorm_enabled: (boolean) for enabling batch normalization.
    :param max_pool_enabled:  (boolean) for enabling max-pooling 2x2 to decrease width and height by a factor of 2.
    :param dropout_keep_prob: (float) for the probability of keeping neurons. If equals -1, it means no dropout
    :param is_training: (boolean) to diff. between training and testing (important for batch normalization and dropout)
    :return out: The output of the layer. (output_shape[0], output_shape[1], output_shape[2], output_shape[3])
    """
    with tf.variable_scope(name) as scope:
        conv_o_b = conv2d_transpose_p(name=scope, x=x, w=w, output_shape=output_shape, kernel_size=kernel_size,
                                      padding=padding, stride=stride,
                                      l2_strength=l2_strength,
                                      bias=bias)

        if batchnorm_enabled:
            conv_o_bn = tf.layers.batch_normalization(conv_o_b, training=is_training)
            if not activation:
                conv_a = conv_o_bn
            else:
                conv_a = activation(conv_o_bn)
        else:
            if not activation:
                conv_a = conv_o_b
            else:
                conv_a = activation(conv_o_b)

        if dropout_keep_prob != -1:
            conv_o_dr = tf.nn.dropout(conv_a, dropout_keep_prob)
        else:
            conv_o_dr = conv_a

        conv_o = conv_o_dr

        return conv_o


#############################################################################################################
# Dense Layer methods 
開發者ID:MG2033,項目名稱:A2C,代碼行數:54,代碼來源:layers.py

示例6: dense

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import graph [as 別名]
def dense(name, x, w=None, output_dim=128, initializer=tf.contrib.layers.xavier_initializer(), l2_strength=0.0,
          bias=0.0,
          activation=None, batchnorm_enabled=False, dropout_keep_prob=-1,
          is_training=True
          ):
    """
    This block is responsible for a fully connected followed by optional (non-linearity, dropout, max-pooling).
    Note that: "is_training" should be passed by a correct value based on being in either training or testing.
    :param name: (string) The name scope provided by the upper tf.name_scope('name') as scope.
    :param x: (tf.tensor) The input to the layer (N, D).
    :param output_dim: (integer) It specifies H, the output second dimension of the fully connected layer [ie:(N, H)]
    :param initializer: (tf.contrib initializer) The initialization scheme, He et al. normal or Xavier normal are recommended.
    :param l2_strength:(weight decay) (float) L2 regularization parameter.
    :param bias: (float) Amount of bias.
    :param activation: (tf.graph operator) The activation function applied after the convolution operation. If None, linear is applied.
    :param batchnorm_enabled: (boolean) for enabling batch normalization.
    :param dropout_keep_prob: (float) for the probability of keeping neurons. If equals -1, it means no dropout
    :param is_training: (boolean) to diff. between training and testing (important for batch normalization and dropout)
    :return out: The output of the layer. (N, H)
    """
    with tf.variable_scope(name) as scope:
        dense_o_b = dense_p(name=scope, x=x, w=w, output_dim=output_dim, initializer=initializer,
                            l2_strength=l2_strength,
                            bias=bias)

        if batchnorm_enabled:
            dense_o_bn = tf.layers.batch_normalization(dense_o_b, training=is_training)
            if not activation:
                dense_a = dense_o_bn
            else:
                dense_a = activation(dense_o_bn)
        else:
            if not activation:
                dense_a = dense_o_b
            else:
                dense_a = activation(dense_o_b)

        if dropout_keep_prob != -1:
            dense_o_dr = tf.nn.dropout(dense_a, dropout_keep_prob)
        else:
            dense_o_dr = dense_a

        dense_o = dense_o_dr
    return dense_o 
開發者ID:MG2033,項目名稱:A2C,代碼行數:46,代碼來源:layers.py

示例7: dense

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import graph [as 別名]
def dense(name, x, w=None, output_dim=128, initializer=tf.contrib.layers.xavier_initializer(), l2_strength=0.0,
          bias=0.0,
          activation=None, batchnorm_enabled=False, dropout_keep_prob=-1,
          is_training=True
          ):
    """
    This block is responsible for a fully connected followed by optional (non-linearity, dropout, max-pooling).
    Note that: "is_training" should be passed by a correct value based on being in either training or testing.
    :param name: (string) The name scope provided by the upper tf.name_scope('name') as scope.
    :param x: (tf.tensor) The input to the layer (N, D).
    :param output_dim: (integer) It specifies H, the output second dimension of the fully connected layer [ie:(N, H)]
    :param initializer: (tf.contrib initializer) The initialization scheme, He et al. normal or Xavier normal are recommended.
    :param l2_strength:(weight decay) (float) L2 regularization parameter.
    :param bias: (float) Amount of bias.
    :param activation: (tf.graph operator) The activation function applied after the convolution operation. If None, linear is applied.
    :param batchnorm_enabled: (boolean) for enabling batch normalization.
    :param dropout_keep_prob: (float) for the probability of keeping neurons. If equals -1, it means no dropout
    :param is_training: (boolean) to diff. between training and testing (important for batch normalization and dropout) 
    :return out: The output of the layer. (N, H)
    """
    with tf.variable_scope(name) as scope:
        dense_o_b = dense_p(name=scope, x=x, w=w, output_dim=output_dim, initializer=initializer,
                            l2_strength=l2_strength,
                            bias=bias)

        if batchnorm_enabled:
            dense_o_bn = tf.layers.batch_normalization(dense_o_b, training=is_training)
            if not activation:
                dense_a = dense_o_bn
            else:
                dense_a = activation(dense_o_bn)
        else:
            if not activation:
                dense_a = dense_o_b
            else:
                dense_a = activation(dense_o_b)

        def dropout_with_keep():
            return tf.nn.dropout(dense_a, dropout_keep_prob)

        def dropout_no_keep():
            return tf.nn.dropout(dense_a, 1.0)

        if dropout_keep_prob != -1:
            dense_o_dr = tf.cond(is_training, dropout_with_keep, dropout_no_keep)
        else:
            dense_o_dr = dense_a

        dense_o = dense_o_dr
    return dense_o 
開發者ID:MSiam,項目名稱:TFSegmentation,代碼行數:52,代碼來源:dense.py

示例8: atrous_conv2d

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import graph [as 別名]
def atrous_conv2d(name, x, w=None, num_filters=16, kernel_size=(3, 3), padding='SAME', dilation_rate=1,
                  initializer=tf.contrib.layers.xavier_initializer(), l2_strength=0.0, bias=0.0,
                  activation=None, batchnorm_enabled=False, max_pool_enabled=False, dropout_keep_prob=-1,
                  is_training=True):
    """
    This block is responsible for a Dilated convolution 2D layer followed by optional (non-linearity, dropout, max-pooling).
    Note that: "is_training" should be passed by a correct value based on being in either training or testing.
    :param name: (string) The name scope provided by the upper tf.name_scope('name') as scope.
    :param x: (tf.tensor) The input to the layer (N, H, W, C).
    :param num_filters: (integer) No. of filters (This is the output depth)
    :param kernel_size: (integer tuple) The size of the convolving kernel.
    :param padding: (string) The amount of padding required.
    :param dilation_rate: (integer) The amount of dilation required. If equals 1, it means normal convolution.
    :param initializer: (tf.contrib initializer) The initialization scheme, He et al. normal or Xavier normal are recommended.
    :param l2_strength:(weight decay) (float) L2 regularization parameter.
    :param bias: (float) Amount of bias.
    :param activation: (tf.graph operator) The activation function applied after the convolution operation. If None, linear is applied.
    :param batchnorm_enabled: (boolean) for enabling batch normalization.
    :param max_pool_enabled:  (boolean) for enabling max-pooling 2x2 to decrease width and height by a factor of 2.
    :param dropout_keep_prob: (float) for the probability of keeping neurons. If equals -1, it means no dropout
    :param is_training: (boolean) to diff. between training and testing (important for batch normalization and dropout)
    :return: The output tensor of the layer (N, H', W', C').
    """
    with tf.variable_scope(name) as scope:
        conv_o_b = __atrous_conv2d_p(scope, x=x, w=w, num_filters=num_filters, kernel_size=kernel_size,
                                     padding=padding, dilation_rate=dilation_rate,
                                     initializer=initializer, l2_strength=l2_strength, bias=bias)

        if batchnorm_enabled:
            conv_o_bn = tf.layers.batch_normalization(conv_o_b, training=is_training)
            if not activation:
                conv_a = conv_o_bn
            else:
                conv_a = activation(conv_o_bn)
        else:
            if not activation:
                conv_a = conv_o_b
            else:
                conv_a = activation(conv_o_b)

        def dropout_with_keep():
            return tf.nn.dropout(conv_a, dropout_keep_prob)

        def dropout_no_keep():
            return tf.nn.dropout(conv_a, 1.0)

        if dropout_keep_prob != -1:
            conv_o_dr = tf.cond(is_training, dropout_with_keep, dropout_no_keep)
        else:
            conv_o_dr = conv_a

        conv_o = conv_o_dr
        if max_pool_enabled:
            conv_o = max_pool_2d(conv_o_dr)

    return conv_o 
開發者ID:MSiam,項目名稱:TFSegmentation,代碼行數:58,代碼來源:convolution.py

示例9: conv2d_transpose

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import graph [as 別名]
def conv2d_transpose(name, x, w=None, output_shape=None, kernel_size=(3, 3), padding='SAME', stride=(1, 1),
                     l2_strength=0.0,
                     bias=0.0, activation=None, batchnorm_enabled=False, dropout_keep_prob=-1,
                     is_training=True):
    """
    This block is responsible for a convolution transpose 2D followed by optional (non-linearity, dropout, max-pooling).
    Note that: "is_training" should be passed by a correct value based on being in either training or testing.
    :param name: (string) The name scope provided by the upper tf.name_scope('name') as scope.
    :param x: (tf.tensor) The input to the layer (N, H, W, C).
    :param output_shape: (Array) [N, H', W', C'] The shape of the corresponding output.
    :param kernel_size: (integer tuple) The size of the convolving kernel.
    :param padding: (string) The amount of padding required.
    :param stride: (integer tuple) The stride required.
    :param l2_strength:(weight decay) (float) L2 regularization parameter.
    :param bias: (float) Amount of bias.
    :param activation: (tf.graph operator) The activation function applied after the convolution operation. If None, linear is applied.
    :param batchnorm_enabled: (boolean) for enabling batch normalization.
    :param dropout_keep_prob: (float) for the probability of keeping neurons. If equals -1, it means no dropout
    :param is_training: (boolean) to diff. between training and testing (important for batch normalization and dropout)
    :return out: The output of the layer. (output_shape[0], output_shape[1], output_shape[2], output_shape[3])
    """
    with tf.variable_scope(name) as scope:
        conv_o_b = __conv2d_transpose_p(name=scope, x=x, w=w, output_shape=output_shape, kernel_size=kernel_size,
                                        padding=padding, stride=stride,
                                        l2_strength=l2_strength,
                                        bias=bias)

        if batchnorm_enabled:
            conv_o_bn = tf.layers.batch_normalization(conv_o_b, training=is_training)
            if not activation:
                conv_a = conv_o_bn
            else:
                conv_a = activation(conv_o_bn)
        else:
            if not activation:
                conv_a = conv_o_b
            else:
                conv_a = activation(conv_o_b)

        def dropout_with_keep():
            return tf.nn.dropout(conv_a, dropout_keep_prob)

        def dropout_no_keep():
            return tf.nn.dropout(conv_a, 1.0)

        if dropout_keep_prob != -1:
            conv_o_dr = tf.cond(is_training, dropout_with_keep, dropout_no_keep)
        else:
            conv_o_dr = conv_a

        conv_o = conv_o_dr

        return conv_o 
開發者ID:MSiam,項目名稱:TFSegmentation,代碼行數:55,代碼來源:convolution.py

示例10: conv2d

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import graph [as 別名]
def conv2d(name, x, w=None, num_filters=16, kernel_size=(3, 3), padding='SAME', stride=(1, 1),
           initializer=tf.contrib.layers.xavier_initializer(), l2_strength=0.0, bias=0.0,
           activation=None, batchnorm_enabled=False, max_pool_enabled=False, dropout_keep_prob=-1,
           is_training=True):
    """
    This block is responsible for a convolution 2D layer followed by optional (non-linearity, dropout, max-pooling).
    Note that: "is_training" should be passed by a correct value based on being in either training or testing.
    :param name: (string) The name scope provided by the upper tf.name_scope('name') as scope.
    :param x: (tf.tensor) The input to the layer (N, H, W, C).
    :param num_filters: (integer) No. of filters (This is the output depth)
    :param kernel_size: (integer tuple) The size of the convolving kernel.
    :param padding: (string) The amount of padding required.
    :param stride: (integer tuple) The stride required.
    :param initializer: (tf.contrib initializer) The initialization scheme, He et al. normal or Xavier normal are recommended.
    :param l2_strength:(weight decay) (float) L2 regularization parameter.
    :param bias: (float) Amount of bias.
    :param activation: (tf.graph operator) The activation function applied after the convolution operation. If None, linear is applied.
    :param batchnorm_enabled: (boolean) for enabling batch normalization.
    :param max_pool_enabled:  (boolean) for enabling max-pooling 2x2 to decrease width and height by a factor of 2.
    :param dropout_keep_prob: (float) for the probability of keeping neurons. If equals -1, it means no dropout
    :param is_training: (boolean) to diff. between training and testing (important for batch normalization and dropout)
    :return: The output tensor of the layer (N, H', W', C').
    """
    with tf.variable_scope(name) as scope:
        conv_o_b = __conv2d_p('conv', x=x, w=w, num_filters=num_filters, kernel_size=kernel_size, stride=stride,
                              padding=padding,
                              initializer=initializer, l2_strength=l2_strength, bias=bias)

        if batchnorm_enabled:
            conv_o_bn = tf.layers.batch_normalization(conv_o_b, training=is_training, epsilon=1e-5)
            if not activation:
                conv_a = conv_o_bn
            else:
                conv_a = activation(conv_o_bn)
        else:
            if not activation:
                conv_a = conv_o_b
            else:
                conv_a = activation(conv_o_b)

        def dropout_with_keep():
            return tf.nn.dropout(conv_a, dropout_keep_prob)

        def dropout_no_keep():
            return tf.nn.dropout(conv_a, 1.0)

        if dropout_keep_prob != -1:
            conv_o_dr = tf.cond(is_training, dropout_with_keep, dropout_no_keep)
        else:
            conv_o_dr = conv_a

        conv_o = conv_o_dr
        if max_pool_enabled:
            conv_o = max_pool_2d(conv_o_dr)

    return conv_o 
開發者ID:MG2033,項目名稱:ShuffleNet,代碼行數:58,代碼來源:layers.py

示例11: dense

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import graph [as 別名]
def dense(name, x, w=None, output_dim=128, initializer=tf.contrib.layers.xavier_initializer(), l2_strength=0.0,
          bias=0.0,
          activation=None, batchnorm_enabled=False, dropout_keep_prob=-1,
          is_training=True
          ):
    """
    This block is responsible for a fully connected followed by optional (non-linearity, dropout, max-pooling).
    Note that: "is_training" should be passed by a correct value based on being in either training or testing.
    :param name: (string) The name scope provided by the upper tf.name_scope('name') as scope.
    :param x: (tf.tensor) The input to the layer (N, D).
    :param output_dim: (integer) It specifies H, the output second dimension of the fully connected layer [ie:(N, H)]
    :param initializer: (tf.contrib initializer) The initialization scheme, He et al. normal or Xavier normal are recommended.
    :param l2_strength:(weight decay) (float) L2 regularization parameter.
    :param bias: (float) Amount of bias.
    :param activation: (tf.graph operator) The activation function applied after the convolution operation. If None, linear is applied.
    :param batchnorm_enabled: (boolean) for enabling batch normalization.
    :param dropout_keep_prob: (float) for the probability of keeping neurons. If equals -1, it means no dropout
    :param is_training: (boolean) to diff. between training and testing (important for batch normalization and dropout)
    :return out: The output of the layer. (N, H)
    """
    with tf.variable_scope(name) as scope:
        dense_o_b = __dense_p(name='dense', x=x, w=w, output_dim=output_dim, initializer=initializer,
                              l2_strength=l2_strength,
                              bias=bias)

        if batchnorm_enabled:
            dense_o_bn = tf.layers.batch_normalization(dense_o_b, training=is_training, epsilon=1e-5)
            if not activation:
                dense_a = dense_o_bn
            else:
                dense_a = activation(dense_o_bn)
        else:
            if not activation:
                dense_a = dense_o_b
            else:
                dense_a = activation(dense_o_b)

        def dropout_with_keep():
            return tf.nn.dropout(dense_a, dropout_keep_prob)

        def dropout_no_keep():
            return tf.nn.dropout(dense_a, 1.0)

        if dropout_keep_prob != -1:
            dense_o_dr = tf.cond(is_training, dropout_with_keep, dropout_no_keep)
        else:
            dense_o_dr = dense_a

        dense_o = dense_o_dr
    return dense_o 
開發者ID:MG2033,項目名稱:ShuffleNet,代碼行數:52,代碼來源:layers.py

示例12: conv2d_transpose

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import graph [as 別名]
def conv2d_transpose(name, x, w=None, output_shape=None, kernel_size=(3, 3), padding='SAME', stride=(1, 1),
                     l2_strength=0.0,
                     bias=0.0, activation=None, batchnorm_enabled=False, dropout_keep_prob=-1,
                     is_training=True):
    """
    This block is responsible for a convolution transpose 2D followed by optional (non-linearity, dropout, max-pooling).
    Note that: "is_training" should be passed by a correct value based on being in either training or testing.
    :param name: (string) The name scope provided by the upper tf.name_scope('name') as scope.
    :param x: (tf.tensor) The input to the layer (N, H, W, C).
    :param output_shape: (Array) [N, H', W', C'] The shape of the corresponding output.
    :param kernel_size: (integer tuple) The size of the convolving kernel.
    :param padding: (string) The amount of padding required.
    :param stride: (integer tuple) The stride required.
    :param l2_strength:(weight decay) (float) L2 regularization parameter.
    :param bias: (float) Amount of bias.
    :param activation: (tf.graph operator) The activation function applied after the convolution operation. If None, linear is applied.
    :param batchnorm_enabled: (boolean) for enabling batch normalization.
    :param max_pool_enabled:  (boolean) for enabling max-pooling 2x2 to decrease width and height by a factor of 2.
    :param dropout_keep_prob: (float) for the probability of keeping neurons. If equals -1, it means no dropout
    :param is_training: (boolean) to diff. between training and testing (important for batch normalization and dropout)
    :return out: The output of the layer. (output_shape[0], output_shape[1], output_shape[2], output_shape[3])
    """
    with tf.variable_scope(name) as scope:
        conv_o_b = conv2d_transpose_p(name=scope, x=x, w=w, output_shape=output_shape, kernel_size=kernel_size,
                                      padding=padding, stride=stride,
                                      l2_strength=l2_strength,
                                      bias=bias)

        if batchnorm_enabled:
            conv_o_bn = tf.layers.batch_normalization(conv_o_b, training=is_training)
            if not activation:
                conv_a = conv_o_bn
            else:
                conv_a = activation(conv_o_bn)
        else:
            if not activation:
                conv_a = conv_o_b
            else:
                conv_a = activation(conv_o_b)

        if dropout_keep_prob != -1:
            conv_o_dr = tf.nn.dropout(conv_a, dropout_keep_prob)
        else:
            conv_o_dr = conv_a

        conv_o = conv_o_dr

        return conv_o 
開發者ID:KokoMind,項目名稱:Recurrent-Environment-Simulators,代碼行數:50,代碼來源:convolution.py


注:本文中的tensorflow.graph方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。