當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.gradients方法代碼示例

本文整理匯總了Python中tensorflow.gradients方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.gradients方法的具體用法?Python tensorflow.gradients怎麽用?Python tensorflow.gradients使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.gradients方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_adam

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import gradients [as 別名]
def test_adam(self):
        with self.test_session() as sess:
            w = tf.get_variable(
                "w",
                shape=[3],
                initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
            x = tf.constant([0.4, 0.2, -0.5])
            loss = tf.reduce_mean(tf.square(x - w))
            tvars = tf.trainable_variables()
            grads = tf.gradients(loss, tvars)
            global_step = tf.train.get_or_create_global_step()
            optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
            train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
            init_op = tf.group(tf.global_variables_initializer(),
                               tf.local_variables_initializer())
            sess.run(init_op)
            for _ in range(100):
                sess.run(train_op)
            w_np = sess.run(w)
            self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2) 
開發者ID:Socialbird-AILab,項目名稱:BERT-Classification-Tutorial,代碼行數:22,代碼來源:optimization_test.py

示例2: test_generate_np_caches_graph_computation_for_eps_clip_or_xi

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import gradients [as 別名]
def test_generate_np_caches_graph_computation_for_eps_clip_or_xi(self):

        x_val = np.random.rand(1, 2)
        x_val = np.array(x_val, dtype=np.float32)

        self.attack.generate_np(x_val, eps=.3, num_iterations=10,
                                clip_max=-5.0, clip_min=-5.0,
                                xi=1e-6)

        old_grads = tf.gradients

        def fn(*x, **y):
            raise RuntimeError()
        tf.gradients = fn

        self.attack.generate_np(x_val, eps=.2, num_iterations=10,
                                clip_max=-4.0, clip_min=-4.0,
                                xi=1e-5)

        tf.gradients = old_grads 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:22,代碼來源:test_attacks.py

示例3: test_fgm_gradient_max

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import gradients [as 別名]
def test_fgm_gradient_max(self):
        input_dim = 2
        num_classes = 3
        batch_size = 4
        rng = np.random.RandomState([2017, 8, 23])
        x = tf.placeholder(tf.float32, [batch_size, input_dim])
        weights = tf.placeholder(tf.float32, [input_dim, num_classes])
        logits = tf.matmul(x, weights)
        probs = tf.nn.softmax(logits)
        adv_x = fgm(x, probs)
        random_example = rng.randint(batch_size)
        random_feature = rng.randint(input_dim)
        output = tf.slice(adv_x, [random_example, random_feature], [1, 1])
        dx, = tf.gradients(output, x)
        # The following line catches GitHub issue #243
        self.assertIsNotNone(dx)
        dx = self.sess.run(dx, feed_dict=random_feed_dict(rng, [x, weights]))
        ground_truth = np.zeros((batch_size, input_dim))
        ground_truth[random_example, random_feature] = 1.
        self.assertClose(dx, ground_truth) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:22,代碼來源:test_attacks_tf.py

示例4: jacobian_graph

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import gradients [as 別名]
def jacobian_graph(predictions, x, nb_classes):
    """
    Create the Jacobian graph to be ran later in a TF session
    :param predictions: the model's symbolic output (linear output,
        pre-softmax)
    :param x: the input placeholder
    :param nb_classes: the number of classes the model has
    :return:
    """
    # This function will return a list of TF gradients
    list_derivatives = []

    # Define the TF graph elements to compute our derivatives for each class
    for class_ind in xrange(nb_classes):
        derivatives, = tf.gradients(predictions[:, class_ind], x)
        list_derivatives.append(derivatives)

    return list_derivatives 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:20,代碼來源:attacks_tf.py

示例5: _compute_gradients

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import gradients [as 別名]
def _compute_gradients(self, loss_fn, x, unused_optim_state):
        """Compute a new value of `x` to minimize `loss_fn`.

        Args:
            loss_fn: a callable that takes `x`, a batch of images, and returns
                a batch of loss values. `x` will be optimized to minimize
                `loss_fn(x)`.
            x: A list of Tensors, the values to be updated. This is analogous
                to the `var_list` argument in standard TF Optimizer.
            unused_optim_state: A (possibly nested) dict, containing any state
                info needed for the optimizer.

        Returns:
            new_x: A list of Tensors, the same length as `x`, which are updated
            new_optim_state: A dict, with the same structure as `optim_state`,
                which have been updated.
        """

        # Assumes `x` is a list,
        # and contains a tensor representing a batch of images
        assert len(x) == 1 and isinstance(x, list), \
            'x should be a list and contain only one image tensor'
        x = x[0]
        loss = reduce_mean(loss_fn(x), axis=0)
        return tf.gradients(loss, x) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:27,代碼來源:attacks_tf.py

示例6: test_clip_eta_goldilocks

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import gradients [as 別名]
def test_clip_eta_goldilocks(self):
        # Test that the clipping handles perturbations that are
        # too small, just right, and too big correctly
        eta = tf.constant([[2.], [3.], [4.]])
        assert eta.dtype == tf.float32, eta.dtype
        eps = 3.
        for ord_arg in [np.inf, 1, 2]:
            for sign in [-1., 1.]:
                clipped = clip_eta(eta * sign, ord_arg, eps)
                clipped_value = self.sess.run(clipped)
                gold = sign * np.array([[2.], [3.], [3.]])
                self.assertClose(clipped_value, gold)
                grad, = tf.gradients(clipped, eta)
                grad_value = self.sess.run(grad)
                # Note: the second 1. is debatable (the left-sided derivative
                # and the right-sided derivative do not match, so formally
                # the derivative is not defined). This test makes sure that
                # we at least handle this oddity consistently across all the
                # argument values we test
                gold = sign * np.array([[1.], [1.], [0.]])
                assert np.allclose(grad_value, gold) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:23,代碼來源:test_utils_tf.py

示例7: _add_train_op

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import gradients [as 別名]
def _add_train_op(self):
    """Sets self._train_op, op to run for training."""
    hps = self._hps

    self._lr_rate = tf.maximum(
        hps.min_lr,  # min_lr_rate.
        tf.train.exponential_decay(hps.lr, self.global_step, 30000, 0.98))

    tvars = tf.trainable_variables()
    with tf.device(self._get_gpu(self._num_gpus-1)):
      grads, global_norm = tf.clip_by_global_norm(
          tf.gradients(self._loss, tvars), hps.max_grad_norm)
    tf.summary.scalar('global_norm', global_norm)
    optimizer = tf.train.GradientDescentOptimizer(self._lr_rate)
    tf.summary.scalar('learning rate', self._lr_rate)
    self._train_op = optimizer.apply_gradients(
        zip(grads, tvars), global_step=self.global_step, name='train_step') 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:19,代碼來源:seq2seq_attention_model.py

示例8: _build_train_op

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import gradients [as 別名]
def _build_train_op(self):
    """Build training specific ops for the graph."""
    self.lrn_rate = tf.constant(self.hps.lrn_rate, tf.float32)
    tf.summary.scalar('learning_rate', self.lrn_rate)

    trainable_variables = tf.trainable_variables()
    grads = tf.gradients(self.cost, trainable_variables)

    if self.hps.optimizer == 'sgd':
      optimizer = tf.train.GradientDescentOptimizer(self.lrn_rate)
    elif self.hps.optimizer == 'mom':
      optimizer = tf.train.MomentumOptimizer(self.lrn_rate, 0.9)

    apply_op = optimizer.apply_gradients(
        zip(grads, trainable_variables),
        global_step=self.global_step, name='train_step')

    train_ops = [apply_op] + self._extra_train_ops
    self.train_op = tf.group(*train_ops)

  # TODO(xpan): Consider batch_norm in contrib/layers/python/layers/layers.py 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:23,代碼來源:resnet_model.py

示例9: connectivity

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import gradients [as 別名]
def connectivity(logits, target, embedding, embedding_matrix, offset):
    logits_correct = select_dim_value(logits, target)
    # Compute partial gradient with respect to the embedding
    partial_gradient = tf.gradients(
        logits_correct[0, offset[0]],
        embedding
    )[0][0, ...]
    # Finailize the chain rule and compute the gradient with respect
    # to the one-hot-encoding of the source. Note that the
    # one-hot-encoding is not part of the graph, which is why the
    # gradient can't be computed directly this way.
    full_gradient = tf.matmul(partial_gradient,
                              tf.transpose(embedding_matrix))

    connectivity = tf.reduce_sum(full_gradient ** 2, axis=1)
    return tf.reshape(connectivity, [1, -1]) 
開發者ID:distillpub,項目名稱:post--memorization-in-rnns,代碼行數:18,代碼來源:__init__.py

示例10: _add_train_op

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import gradients [as 別名]
def _add_train_op(self):
        # In regression, the objective loss is Mean Squared Error (MSE).
        self.loss = tf.losses.mean_squared_error(labels = self._y, predictions = self.output)

        tvars = tf.trainable_variables()
        gradients = tf.gradients(self.loss, tvars, aggregation_method=tf.AggregationMethod.EXPERIMENTAL_TREE)

        # Clip the gradients
        with tf.device("/gpu:{}".format(self._hps.dqn_gpu_num)):
            grads, global_norm = tf.clip_by_global_norm(gradients, self._hps.max_grad_norm)

        # Add a summary
        tf.summary.scalar('global_norm', global_norm)

        # Apply adagrad optimizer
        optimizer = tf.train.AdamOptimizer(self._hps.lr)
        with tf.device("/gpu:{}".format(self._hps.dqn_gpu_num)):
            self.train_op = optimizer.apply_gradients(zip(grads, tvars), global_step=self.global_step, name='train_step')

        self.variable_summaries('dqn_loss',self.loss) 
開發者ID:yaserkl,項目名稱:TransferRL,代碼行數:22,代碼來源:dqn.py

示例11: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import gradients [as 別名]
def __init__(self, state_size, action_size, lr,
               name, n_h1=400, n_h2=300, global_name='global'):

    self.state_size = state_size
    self.action_size = action_size
    self.name = name
    self.n_h1 = n_h1
    self.n_h2 = n_h2

    self.optimizer = tf.train.AdamOptimizer(lr)
    self.input_s, self.input_a, self.advantage, self.target_v, self.policy, self.value, self.action_est, self.model_variables = self._build_network(
        name)

    # 0.5, 0.2, 1.0
    self.value_loss = 0.5 * tf.reduce_sum(tf.square(self.target_v - tf.reshape(self.value, [-1])))
    self.entropy_loss = 1.0 * tf.reduce_sum(self.policy * tf.log(self.policy))
    self.policy_loss = 1.0 * tf.reduce_sum(-tf.log(self.action_est) * self.advantage)
    self.l2_loss = tf.add_n([tf.nn.l2_loss(v) for v in self.model_variables])
    # self.loss = 0.5 * self.value_loss + self.policy_loss + 0.2 * self.entropy_loss
    self.loss = self.value_loss + self.policy_loss + self.entropy_loss
    self.gradients = tf.gradients(self.loss, self.model_variables)
    if name != global_name:
      self.var_norms = tf.global_norm(self.model_variables)
      global_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, global_name)
      self.apply_gradients = self.optimizer.apply_gradients(zip(self.gradients, global_variables)) 
開發者ID:yrlu,項目名稱:reinforcement_learning,代碼行數:27,代碼來源:ac_net.py

示例12: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import gradients [as 別名]
def __init__(self, state_size, action_size, lr, n_h1=400, n_h2=300, tau=0.001):
    self.state_size = state_size
    self.action_size = action_size
    self.optimizer = tf.train.AdamOptimizer(lr)
    self.tau = tau

    self.n_h1 = n_h1
    self.n_h2 = n_h2

    self.input_s, self.action, self.critic_variables, self.q_value = self._build_network("critic")
    self.input_s_target, self.action_target, self.critic_variables_target, self.q_value_target = self._build_network("critic_target")

    self.target = tf.placeholder(tf.float32, [None])
    self.l2_loss = tf.add_n([tf.nn.l2_loss(v) for v in self.critic_variables])
    self.loss = tf.reduce_mean(tf.square(self.target - self.q_value)) + 0.01*self.l2_loss
    self.optimize = self.optimizer.minimize(self.loss)
    self.update_target_op = [self.critic_variables_target[i].assign(tf.multiply(self.critic_variables[i], self.tau) + tf.multiply(self.critic_variables_target[i], 1 - self.tau)) for i in range(len(self.critic_variables))]
    self.action_gradients = tf.gradients(self.q_value, self.action) 
開發者ID:yrlu,項目名稱:reinforcement_learning,代碼行數:20,代碼來源:critic.py

示例13: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import gradients [as 別名]
def __init__(self, state_size, action_size, lr, n_h1=400, n_h2=300, tau=0.001):
    self.state_size = state_size
    self.action_size = action_size
    self.optimizer = tf.train.AdamOptimizer(lr)
    self.tau = tau

    self.n_h1 = n_h1
    self.n_h2 = n_h2

    self.input_s, self.actor_variables, self.action_values = self._build_network("actor")
    self.input_s_target, self.actor_variables_target, self.action_values_target = self._build_network("actor_target")

    self.action_gradients = tf.placeholder(tf.float32, [None, self.action_size])
    self.actor_gradients = tf.gradients(self.action_values, self.actor_variables, -self.action_gradients)
    self.update_target_op = [self.actor_variables_target[i].assign(tf.multiply(self.actor_variables[i], self.tau) + tf.multiply(self.actor_variables_target[i], 1 - self.tau)) 
                              for i in range(len(self.actor_variables))]
    self.optimize = self.optimizer.apply_gradients(zip(self.actor_gradients, self.actor_variables)) 
開發者ID:yrlu,項目名稱:reinforcement_learning,代碼行數:19,代碼來源:actor.py

示例14: build_train_op

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import gradients [as 別名]
def build_train_op(self, loss):
        if self.optim == 'adam':
            print 'Adam optimizer'
            v_dict = self.get_variables_by_name([""], True)
            var_list1 = [i for i in v_dict[""] if 'vis_enc' not in i.name]
            var_list2 = self.get_variables_by_name(["vis_enc"], True)
            var_list2 = var_list2["vis_enc"]

            opt1 = tf.train.AdamOptimizer(self.lr, name="Adam")
            opt2 = tf.train.AdamOptimizer(self.lr*0.1, name="Adam_vis_enc")
            grads = tf.gradients(loss, var_list1 + var_list2)
            grads1 = grads[:len(var_list1)]
            grads2 = grads[len(var_list1):]
            train_op1 = opt1.apply_gradients(zip(grads1, var_list1))
            train_op2 = opt2.apply_gradients(zip(grads2, var_list2))
            train_op = tf.group(train_op1, train_op2)            
        else:
            print 'SGD optimizer'
            tvars = tf.trainable_variables()
            optimizer = tf.train.GradientDescentOptimizer(self._lr)
            grads = tf.gradients(cost, tvars)
            train_op = optimizer.apply_gradients(zip(grads, tvars))
        return train_op 
開發者ID:kanchen-usc,項目名稱:GroundeR,代碼行數:25,代碼來源:model_unsupervise.py

示例15: adem

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import gradients [as 別名]
def adem(context_vector, model_response_vector, reference_response_vector,
         context_dim, model_response_dim, reference_response_dim,
         human_score_place, lr, max_grad_norm):
    model_score, M, N = tf_dynamic_adem_score(
        context=context_vector,
        model_response=model_response_vector,
        reference_response=reference_response_vector,
        shape_info={'batch_size': None,
                    'ct_dim': context_dim,
                    'mr_dim': model_response_dim,
                    'rr_dim': reference_response_dim})

    loss = compute_adem_l1_loss(human_score_place, model_score, M, N)

    tvars = tf.trainable_variables()
    grads, _ = tf.clip_by_global_norm(
        tf.gradients(loss, tvars), max_grad_norm)
    optimizer = tf.train.AdamOptimizer(lr)
    train_op = optimizer.apply_gradients(
        zip(grads, tvars),
        global_step=tf.contrib.framework.get_or_create_global_step()
    )
    return train_op, loss, model_score 
開發者ID:Yoctol,項目名稱:ADEM,代碼行數:25,代碼來源:adem_graphs.py


注:本文中的tensorflow.gradients方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。