當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.glorot_uniform_initializer方法代碼示例

本文整理匯總了Python中tensorflow.glorot_uniform_initializer方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.glorot_uniform_initializer方法的具體用法?Python tensorflow.glorot_uniform_initializer怎麽用?Python tensorflow.glorot_uniform_initializer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.glorot_uniform_initializer方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_initializer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import glorot_uniform_initializer [as 別名]
def get_initializer(initializer, initializer_gain):
    tfdtype = tf.as_dtype(dtype.floatx())

    if initializer == "uniform":
        max_val = initializer_gain
        return tf.random_uniform_initializer(-max_val, max_val, dtype=tfdtype)
    elif initializer == "normal":
        return tf.random_normal_initializer(0.0, initializer_gain, dtype=tfdtype)
    elif initializer == "normal_unit_scaling":
        return tf.variance_scaling_initializer(initializer_gain,
                                               mode="fan_avg",
                                               distribution="normal",
                                               dtype=tfdtype)
    elif initializer == "uniform_unit_scaling":
        return tf.variance_scaling_initializer(initializer_gain,
                                               mode="fan_avg",
                                               distribution="uniform",
                                               dtype=tfdtype)
    else:
        tf.logging.warn("Unrecognized initializer: %s" % initializer)
        tf.logging.warn("Return to default initializer: glorot_uniform_initializer")
        return tf.glorot_uniform_initializer(dtype=tfdtype) 
開發者ID:bzhangGo,項目名稱:zero,代碼行數:24,代碼來源:initializer.py

示例2: _dense_block_mode1

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import glorot_uniform_initializer [as 別名]
def _dense_block_mode1(x, hidden_units, dropouts, densenet=False, training=False, seed=0, bn=False, name="dense_block"):
    """
    :param x:
    :param hidden_units:
    :param dropouts:
    :param densenet: enable densenet
    :return:
    Ref: https://github.com/titu1994/DenseNet
    """
    for i, (h, d) in enumerate(zip(hidden_units, dropouts)):
        z = tf.layers.Dense(h, kernel_initializer=tf.glorot_uniform_initializer(seed=seed * i),
                            dtype=tf.float32,
                            bias_initializer=tf.zeros_initializer())(x)
        if bn:
            z = batch_normalization(z, training=training, name=name+"-"+str(i))
        z = tf.nn.relu(z)
        # z = tf.nn.selu(z)
        z = tf.layers.Dropout(d, seed=seed * i)(z, training=training) if d > 0 else z
        if densenet:
            x = tf.concat([x, z], axis=-1)
        else:
            x = z
    return x 
開發者ID:ChenglongChen,項目名稱:tensorflow-XNN,代碼行數:25,代碼來源:nn_module.py

示例3: _dense_block_mode2

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import glorot_uniform_initializer [as 別名]
def _dense_block_mode2(x, hidden_units, dropouts, densenet=False, training=False, seed=0, bn=False, name="dense_block"):
    """
    :param x:
    :param hidden_units:
    :param dropouts:
    :param densenet: enable densenet
    :return:
    Ref: https://github.com/titu1994/DenseNet
    """
    for i, (h, d) in enumerate(zip(hidden_units, dropouts)):
        if bn:
            z = batch_normalization(x, training=training, name=name + "-" + str(i))
        z = tf.nn.relu(z)
        z = tf.layers.Dropout(d, seed=seed * i)(z, training=training) if d > 0 else z
        z = tf.layers.Dense(h, kernel_initializer=tf.glorot_uniform_initializer(seed=seed * i), dtype=tf.float32,
                            bias_initializer=tf.zeros_initializer())(z)
        if densenet:
            x = tf.concat([x, z], axis=-1)
        else:
            x = z
    return x 
開發者ID:ChenglongChen,項目名稱:tensorflow-XNN,代碼行數:23,代碼來源:nn_module.py

示例4: _resnet_branch_mode1

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import glorot_uniform_initializer [as 別名]
def _resnet_branch_mode1(x, hidden_units, dropouts, training, seed=0):
    h1, h2, h3 = hidden_units
    dr1, dr2, dr3 = dropouts
    # branch 2
    x2 = tf.layers.Dense(h1, kernel_initializer=tf.glorot_uniform_initializer(seed=seed * 2), dtype=tf.float32,
                         bias_initializer=tf.zeros_initializer())(x)
    x2 = tf.layers.BatchNormalization()(x2)
    x2 = tf.nn.relu(x2)
    x2 = tf.layers.Dropout(dr1, seed=seed * 1)(x2, training=training) if dr1 > 0 else x2

    x2 = tf.layers.Dense(h2, kernel_initializer=tf.glorot_uniform_initializer(seed=seed * 3), dtype=tf.float32,
                         bias_initializer=tf.zeros_initializer())(x2)
    x2 = tf.layers.BatchNormalization()(x2)
    x2 = tf.nn.relu(x2)
    x2 = tf.layers.Dropout(dr2, seed=seed * 2)(x2, training=training) if dr2 > 0 else x2

    x2 = tf.layers.Dense(h3, kernel_initializer=tf.glorot_uniform_initializer(seed=seed * 4), dtype=tf.float32,
                         bias_initializer=tf.zeros_initializer())(x2)
    x2 = tf.layers.BatchNormalization()(x2)

    return x2 
開發者ID:ChenglongChen,項目名稱:tensorflow-XNN,代碼行數:23,代碼來源:nn_module.py

示例5: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import glorot_uniform_initializer [as 別名]
def __init__(self, name, layer_conf):
        self._name = layer_conf.pop('name', None) or name
        activation_name = layer_conf.get('activation', None)
        if activation_name:
            layer_conf['activation'] = Layer.activation_dict[activation_name]

        self._kernel_initializer = layer_conf.pop('kernel_initializer', None)
        if isinstance(self._kernel_initializer, str):
            assert self._kernel_initializer in ('random_normal_initializer',
                                                'random_uniform_initializer',
                                                'glorot_normal_initializer',
                                                'glorot_uniform_initializer'), \
                "Invalid value of kernel_initializer, available value is one of " \
                "['random_normal_initializer', 'random_uniform_initializer'," \
                "'glorot_normal_initializer', 'glorot_uniform_initializer']"

            self._kernel_initializer = Layer.initializer_dict[
                self._kernel_initializer]
        elif (isinstance(self._kernel_initializer, int)
              or isinstance(self._kernel_initializer, float)):
            self._kernel_initializer = tf.constant_initializer(
                value=self._kernel_initializer) 
開發者ID:alibaba,項目名稱:EasyRL,代碼行數:24,代碼來源:layer_utils.py

示例6: _dense_block_mode1

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import glorot_uniform_initializer [as 別名]
def _dense_block_mode1(x, hidden_units, dropouts, densenet=False, scope_name="dense_block", reuse=False, training=False, seed=0, bn=False):
    """
    :param x:
    :param hidden_units:
    :param dropouts:
    :param densenet: enable densenet
    :return:
    Ref: https://github.com/titu1994/DenseNet
    """
    for i, (h, d) in enumerate(zip(hidden_units, dropouts)):
        scope_name_i = "%s-dense_block_mode1-%s"%(str(scope_name), str(i))
        with tf.variable_scope(scope_name, reuse=reuse):
            z = tf.layers.dense(x, h, kernel_initializer=tf.glorot_uniform_initializer(seed=seed * i),
                                  reuse=reuse,
                                  name=scope_name_i)
            if bn:
                z = batch_normalization(z, training=training, name=scope_name_i+"-bn")
            z = tf.nn.relu(z)
            z = tf.layers.Dropout(d, seed=seed * i)(z, training=training) if d > 0 else z
            if densenet:
                x = tf.concat([x, z], axis=-1)
            else:
                x = z
    return x 
開發者ID:yyht,項目名稱:BERT,代碼行數:26,代碼來源:nn_module.py

示例7: _resnet_branch_mode1

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import glorot_uniform_initializer [as 別名]
def _resnet_branch_mode1(x, hidden_units, dropouts, training, seed=0):
    h1, h2, h3 = hidden_units
    dr1, dr2, dr3 = dropouts
    name = "resnet_block"
    # branch 2
    x2 = tf.layers.Dense(h1, kernel_initializer=tf.glorot_uniform_initializer(seed=seed * 2), dtype=tf.float32,
                         bias_initializer=tf.zeros_initializer())(x)
    x2 = tf.layers.BatchNormalization()(x2, training=training)
    # x2 = batch_normalization(x2, training=training, name=name + "-" + str(1))
    x2 = tf.nn.relu(x2)
    x2 = tf.layers.Dropout(dr1, seed=seed * 1)(x2, training=training) if dr1 > 0 else x2

    x2 = tf.layers.Dense(h2, kernel_initializer=tf.glorot_uniform_initializer(seed=seed * 3), dtype=tf.float32,
                         bias_initializer=tf.zeros_initializer())(x2)
    x2 = tf.layers.BatchNormalization()(x2, training=training)
    # x2 = batch_normalization(x2, training=training, name=name + "-" + str(2))
    x2 = tf.nn.relu(x2)
    x2 = tf.layers.Dropout(dr2, seed=seed * 2)(x2, training=training) if dr2 > 0 else x2

    x2 = tf.layers.Dense(h3, kernel_initializer=tf.glorot_uniform_initializer(seed=seed * 4), dtype=tf.float32,
                         bias_initializer=tf.zeros_initializer())(x2)
    x2 = tf.layers.BatchNormalization()(x2, training=training)
    # x2 = batch_normalization(x2, training=training, name=name + "-" + str(3))

    return x2 
開發者ID:yyht,項目名稱:BERT,代碼行數:27,代碼來源:nn_module.py

示例8: conv2d_fixed_padding

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import glorot_uniform_initializer [as 別名]
def conv2d_fixed_padding(inputs, filters, kernel_size, strides, data_format, kernel_initializer=tf.glorot_uniform_initializer, name=None):
    """Strided 2-D convolution with explicit padding."""
    # The padding is consistent and is based only on `kernel_size`, not on the
    # dimensions of `inputs` (as opposed to using `tf.layers.conv2d` alone).
    if strides > 1:
        inputs = fixed_padding(inputs, kernel_size, data_format)

    return tf.layers.conv2d(
                inputs=inputs, filters=filters, kernel_size=kernel_size, strides=strides,
                padding=('SAME' if strides == 1 else 'VALID'), use_bias=False,
                kernel_initializer=kernel_initializer(),
                data_format=data_format, name=name)

# input image order: BGR, range [0-255]
# mean_value: 104, 117, 123
# only subtract mean is used 
開發者ID:HiKapok,項目名稱:tf.fashionAI,代碼行數:18,代碼來源:detxt_cpn.py

示例9: conv2d_fixed_padding

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import glorot_uniform_initializer [as 別名]
def conv2d_fixed_padding(inputs, filters, kernel_size, strides, data_format, kernel_initializer=tf.glorot_uniform_initializer, name=None):
    """Strided 2-D convolution with explicit padding."""
    # The padding is consistent and is based only on `kernel_size`, not on the
    # dimensions of `inputs` (as opposed to using `tf.layers.conv2d` alone).
    if strides > 1:
        inputs = fixed_padding(inputs, kernel_size, data_format)

    return tf.layers.conv2d(
                inputs=inputs, filters=filters, kernel_size=kernel_size, strides=strides,
                padding=('SAME' if strides == 1 else 'VALID'), use_bias=False,
                kernel_initializer=kernel_initializer(),
                data_format=data_format, name=name)


################################################################################
# ResNet block definitions.
################################################################################ 
開發者ID:HiKapok,項目名稱:tf.fashionAI,代碼行數:19,代碼來源:seresnet_cpn.py

示例10: cpn_backbone

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import glorot_uniform_initializer [as 別名]
def cpn_backbone(inputs, istraining, data_format):
    block_strides = [1, 2, 2, 2]
    inputs = conv2d_fixed_padding(inputs=inputs, filters=64, kernel_size=7, strides=2, data_format=data_format, kernel_initializer=tf.glorot_uniform_initializer)
    inputs = tf.identity(inputs, 'initial_conv')

    inputs = tf.layers.max_pooling2d(inputs=inputs, pool_size=3, strides=2, padding='SAME', data_format=data_format)
    inputs = tf.identity(inputs, 'initial_max_pool')

    end_points = []
    for i, num_blocks in enumerate([3, 4, 6, 3]):
      num_filters = 64 * (2**i)
      #with tf.variable_scope('block_{}'.format(i), 'resnet50', values=[inputs]):
      inputs = block_layer(
          inputs=inputs, filters=num_filters, bottleneck=True,
          block_fn=_bottleneck_block_v1, blocks=num_blocks,
          strides=block_strides[i], training=istraining,
          name='block_layer{}'.format(i + 1), data_format=data_format)
      end_points.append(inputs)

    return end_points 
開發者ID:HiKapok,項目名稱:tf.fashionAI,代碼行數:22,代碼來源:cpn.py

示例11: GRU2

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import glorot_uniform_initializer [as 別名]
def GRU2(self, inputs, output_size, name, dropout_keep_rate):
        with tf.variable_scope('rnn_' + name, reuse=tf.AUTO_REUSE):
            kernel_init = tf.glorot_uniform_initializer(seed=self.seed, dtype=tf.float32)
            bias_init = tf.zeros_initializer()

            fw_cell = tf.contrib.rnn.GRUCell(output_size, name='gru', reuse=tf.AUTO_REUSE, activation=tf.nn.tanh,
                                             kernel_initializer=kernel_init, bias_initializer=bias_init)
            fw_cell = tf.contrib.rnn.DropoutWrapper(fw_cell, output_keep_prob=dropout_keep_rate)

            bw_cell = tf.contrib.rnn.GRUCell(output_size, name='gru', reuse=tf.AUTO_REUSE, activation=tf.nn.tanh,
                                             kernel_initializer=kernel_init, bias_initializer=bias_init)
            bw_cell = tf.contrib.rnn.DropoutWrapper(bw_cell, output_keep_prob=dropout_keep_rate)

            output_fw, _ = tf.nn.dynamic_rnn(fw_cell, inputs, sequence_length=self.seq_len, dtype=tf.float32)
            output_bw, _ = tf.nn.dynamic_rnn(bw_cell, inputs, sequence_length=self.seq_len, dtype=tf.float32)

            output = tf.concat([output_fw, output_bw], axis=-1)
            return output 
開發者ID:soujanyaporia,項目名稱:multimodal-sentiment-analysis,代碼行數:20,代碼來源:model.py

示例12: BiGRU

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import glorot_uniform_initializer [as 別名]
def BiGRU(self, inputs, output_size, name, dropout_keep_rate):
        with tf.variable_scope('rnn_' + name, reuse=tf.AUTO_REUSE):
            kernel_init = tf.glorot_uniform_initializer(seed=self.seed, dtype=tf.float32)
            bias_init = tf.zeros_initializer()

            fw_cell = tf.contrib.rnn.GRUCell(output_size, name='gru', reuse=tf.AUTO_REUSE, activation=tf.nn.tanh,
                                             kernel_initializer=kernel_init, bias_initializer=bias_init)
            fw_cell = tf.contrib.rnn.DropoutWrapper(fw_cell, output_keep_prob=dropout_keep_rate)

            # bw_cell = tf.contrib.rnn.GRUCell(output_size, name='gru', reuse=tf.AUTO_REUSE, activation=tf.nn.tanh,
            #                                 kernel_initializer=kernel_init, bias_initializer=bias_init)
            # bw_cell = tf.contrib.rnn.DropoutWrapper(bw_cell, output_keep_prob=dropout_keep_rate)

            outputs, _ = tf.nn.bidirectional_dynamic_rnn(cell_fw=fw_cell, cell_bw=fw_cell, inputs=inputs,
                                                         sequence_length=self.seq_len, dtype=tf.float32)

            output_fw, output_bw = outputs
            output = tf.concat([output_fw, output_bw], axis=-1)
            return output 
開發者ID:soujanyaporia,項目名稱:multimodal-sentiment-analysis,代碼行數:21,代碼來源:model.py

示例13: aggregate_maxpool

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import glorot_uniform_initializer [as 別名]
def aggregate_maxpool(features, agg_transform_size, adj_with_self_loops_indices, num_features, name):
    with tf.name_scope(name):
        fc_weights = tf.get_variable(f"{name}-fc_weights",
                                     shape=[num_features, agg_transform_size],
                                     dtype=tf.float32,
                                     initializer=tf.glorot_uniform_initializer(),
                                     )
        # dims: num_nodes x num_features, num_features x agg_transform_size -> num_nodes x agg_transform_size
        if isinstance(features, tf.SparseTensor):
            transformed_features = tf.sparse_tensor_dense_matmul(features, fc_weights)
        else:
            transformed_features = tf.matmul(features, fc_weights)
        transformed_features = tf.nn.relu(transformed_features)

        # Spread out the transformed features to neighbours.
        # dims: num_nodes x agg_transform_size, num_nodes x max_degree -> num_nodes x agg_transform_size x max_degree
        neighbours_features = tf.gather(transformed_features, adj_with_self_loops_indices)

        # employ the max aggregator
        output = tf.reduce_max(neighbours_features, axis=1)
        return output


# dims:
#   features: num_nodes x num_features 
開發者ID:shchur,項目名稱:gnn-benchmark,代碼行數:27,代碼來源:graphsage.py

示例14: fully_connected_layer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import glorot_uniform_initializer [as 別名]
def fully_connected_layer(inputs, output_dim, activation_fn, dropout_prob, weight_decay, name):
    with tf.name_scope(name):
        input_dim = int(inputs.get_shape()[1])
        weights = tf.get_variable("%s-weights" % name, [input_dim, output_dim], dtype=tf.float32,
                                  initializer=tf.glorot_uniform_initializer(),
                                  regularizer=slim.l2_regularizer(weight_decay))

        # Apply dropout to inputs if required
        inputs = tf.cond(
            tf.cast(dropout_prob, tf.bool),
            true_fn=(lambda: dropout_supporting_sparse_tensors(inputs, 1 - dropout_prob)),
            false_fn=(lambda: inputs),
        )

        if isinstance(inputs, tf.SparseTensor):
            output = tf.sparse_tensor_dense_matmul(inputs, weights)
        else:
            output = tf.matmul(inputs, weights)
        output = tf.contrib.layers.bias_add(output)
        return activation_fn(output) if activation_fn else output 
開發者ID:shchur,項目名稱:gnn-benchmark,代碼行數:22,代碼來源:mlp.py

示例15: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import glorot_uniform_initializer [as 別名]
def __init__(self, emb_dim, is_train, train_dropout=1.0,
               input_dim=None, embeddings=None, scope="embeddings",
               use_tanh=False, num_ps_tasks=None):
    super(EmbeddingLookup, self).__init__()
    self.emb_dim = emb_dim
    self.is_train = is_train
    self.dropout = train_dropout
    self.use_tanh = use_tanh
    with tf.variable_scope(scope):
      if embeddings:
        self.embeddings = embeddings
      else:
        partitioner = None
        if num_ps_tasks:
          partitioner = tf.min_max_variable_partitioner(
              max_partitions=num_ps_tasks
          )
        self.embeddings = tf.get_variable(
            "embeddings", shape=(input_dim, self.emb_dim),
            initializer=tf.glorot_uniform_initializer(),
            partitioner=partitioner
        )
    if not embeddings:
      utils.add_variable_summaries(self.embeddings, scope) 
開發者ID:tensorflow,項目名稱:neural-structured-learning,代碼行數:26,代碼來源:encoders.py


注:本文中的tensorflow.glorot_uniform_initializer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。