當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.glorot_normal_initializer方法代碼示例

本文整理匯總了Python中tensorflow.glorot_normal_initializer方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.glorot_normal_initializer方法的具體用法?Python tensorflow.glorot_normal_initializer怎麽用?Python tensorflow.glorot_normal_initializer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.glorot_normal_initializer方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import glorot_normal_initializer [as 別名]
def __init__(self, name, layer_conf):
        self._name = layer_conf.pop('name', None) or name
        activation_name = layer_conf.get('activation', None)
        if activation_name:
            layer_conf['activation'] = Layer.activation_dict[activation_name]

        self._kernel_initializer = layer_conf.pop('kernel_initializer', None)
        if isinstance(self._kernel_initializer, str):
            assert self._kernel_initializer in ('random_normal_initializer',
                                                'random_uniform_initializer',
                                                'glorot_normal_initializer',
                                                'glorot_uniform_initializer'), \
                "Invalid value of kernel_initializer, available value is one of " \
                "['random_normal_initializer', 'random_uniform_initializer'," \
                "'glorot_normal_initializer', 'glorot_uniform_initializer']"

            self._kernel_initializer = Layer.initializer_dict[
                self._kernel_initializer]
        elif (isinstance(self._kernel_initializer, int)
              or isinstance(self._kernel_initializer, float)):
            self._kernel_initializer = tf.constant_initializer(
                value=self._kernel_initializer) 
開發者ID:alibaba,項目名稱:EasyRL,代碼行數:24,代碼來源:layer_utils.py

示例2: _residual_conv

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import glorot_normal_initializer [as 別名]
def _residual_conv(self, input_signals: tf.Tensor, name: str):
        with tf.variable_scope(name):
            # Initialized as described in the paper.
            # Note: this may be equivalent to tf.glorot_normal_initializer
            init_deviat = np.sqrt(4 / self.conv_features)
            convolution_filters = get_variable(
                "convolution_filters",
                [self.kernel_width, self.conv_features,
                 2 * self.conv_features],
                initializer=tf.random_normal_initializer(stddev=init_deviat))

            bias = get_variable(
                name="conv_bias",
                shape=[2 * self.conv_features],
                initializer=tf.zeros_initializer())

            conv = (tf.nn.conv1d(input_signals, convolution_filters, 1, "SAME")
                    + bias)

            return glu(conv) + input_signals 
開發者ID:ufal,項目名稱:neuralmonkey,代碼行數:22,代碼來源:facebook_conv.py

示例3: encoder_layer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import glorot_normal_initializer [as 別名]
def encoder_layer(input_sequence, dropout_keep_prob_tensor):
    self_attention_layer = multi_head_attention(input_sequence, dropout_keep_prob_tensor)

    if hp.self_attention_sublayer_residual_and_norm:
        self_attention_layer = tf.add(self_attention_layer, input_sequence)
        self_attention_layer = tf.contrib.layers.layer_norm(self_attention_layer)

    # Add the 2-layer feed-forward with residual connections and layer normalization. Transformer uses it.
    if hp.ffnn_sublayer:
        ffnn_sublayer_output = tf.layers.dense(self_attention_layer, hp.model_dim, activation=tf.nn.relu, use_bias=True,
                                          kernel_initializer=tf.glorot_normal_initializer(), bias_initializer=tf.zeros_initializer())
        ffnn_sublayer_output = tf.layers.dense(ffnn_sublayer_output, hp.model_dim, activation=tf.nn.relu, use_bias=True,
                                          kernel_initializer=tf.glorot_normal_initializer(), bias_initializer=tf.zeros_initializer())
        if hp.ffnn_sublayer_dropout:
             ffnn_sublayer_output = tf.nn.dropout(ffnn_sublayer_output, keep_prob=dropout_keep_prob_tensor)          # ignore some input info to regularize the model
        ffnn_sublayer_output = tf.add(ffnn_sublayer_output, self_attention_layer)
        encoder_layer_output = tf.contrib.layers.layer_norm(ffnn_sublayer_output)
    else:
        encoder_layer_output = self_attention_layer

    return encoder_layer_output 
開發者ID:Artaches,項目名稱:SSAN-self-attention-sentiment-analysis-classification,代碼行數:23,代碼來源:san.py

示例4: create_gconv_variables

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import glorot_normal_initializer [as 別名]
def create_gconv_variables(self, name_block, i, in_feat, fnet_feat, out_feat, rank_theta, stride_th1, stride_th2):
	
		name = name_block + "_nl_" + str(i) + "_flayer0"
		self.W[name] = tf.get_variable(name, [in_feat, fnet_feat], dtype=tf.float32, initializer=tf.glorot_normal_initializer())
		self.b[name] = tf.get_variable("b_"+name, [1, fnet_feat], dtype=tf.float32, initializer=tf.zeros_initializer()) 	
		self.dn_vars = self.dn_vars + [self.W[name], self.b[name]]
		name = name_block + "_nl_" + str(i) + "_flayer1"
		self.W[name+"_th1"] = tf.get_variable(name+"_th1", [fnet_feat, stride_th1*rank_theta], dtype=tf.float32, initializer=tf.random_normal_initializer(0,1.0/(np.sqrt(fnet_feat+0.0)*np.sqrt(in_feat+0.0))))
		self.b[name+"_th1"] = tf.get_variable(name+"_b_th1", [1, rank_theta, in_feat], dtype=tf.float32, initializer=tf.zeros_initializer())
		self.W[name+"_th2"] = tf.get_variable(name+"_th2", [fnet_feat, stride_th2*rank_theta], dtype=tf.float32, initializer=tf.random_normal_initializer(0,1.0/(np.sqrt(fnet_feat+0.0)*np.sqrt(in_feat+0.0))))
		self.b[name+"_th2"] = tf.get_variable(name+"_b_th2", [1, rank_theta, out_feat], dtype=tf.float32, initializer=tf.zeros_initializer())
		self.W[name+"_thl"] = tf.get_variable(name+"_thl", [fnet_feat, rank_theta], dtype=tf.float32, initializer=tf.random_normal_initializer(0,1.0/np.sqrt(rank_theta+0.0)))
		self.b[name+"_thl"] = tf.get_variable(name+"_b_thl", [1, rank_theta], dtype=tf.float32, initializer=tf.zeros_initializer())
		self.dn_vars = self.dn_vars + [self.W[name+"_th1"],self.b[name+"_th1"],self.W[name+"_th2"],self.b[name+"_th2"],self.W[name+"_thl"],self.b[name+"_thl"]]	
		name = name_block + "_l_" + str(i)
		self.W[name] = tf.get_variable(name, [3, 3, in_feat, out_feat], dtype=tf.float32, initializer=tf.glorot_normal_initializer())
		self.dn_vars = self.dn_vars + [self.W[name]]
		name = name_block + "_" + str(i)
		self.b[name] = tf.get_variable(name, [1, out_feat], dtype=tf.float32, initializer=tf.zeros_initializer()) 
		self.dn_vars = self.dn_vars + [self.b[name]] 
開發者ID:diegovalsesia,項目名稱:gcdn,代碼行數:22,代碼來源:net.py

示例5: cnn_with_2dfeature

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import glorot_normal_initializer [as 別名]
def cnn_with_2dfeature(self, x2d, reuse=False):
        with tf.variable_scope('discriminator', reuse=reuse) as scope:
            block_num = 8
            filters = 16
            kernel_size = [4, 4]
            act = tf.nn.relu
            #kernel_initializer = tf.truncated_normal_initializer(stddev=0.01)
            kernel_initializer = tf.glorot_normal_initializer()
            #kernel_initializer = None
            bias_initializer = tf.zeros_initializer()
            #kernel_regularizer = tf.contrib.layers.l2_regularizer(scale=0.001)
            kernel_regularizer = None
            bias_regularizer = None

            for i in np.arange(block_num):
                inputs = x2d if i == 0 else conv_
                conv_ = tf.layers.conv2d(inputs=inputs, filters=filters,
                        kernel_size=kernel_size, strides=(1,1), padding='same', activation=act,
                        kernel_initializer=kernel_initializer, bias_initializer=bias_initializer,
                        kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer)

            logits = tf.layers.conv2d(inputs=conv_, filters=1,
                    kernel_size=kernel_size, strides=(1,1), padding='same',
                    kernel_initializer=kernel_initializer, bias_initializer=bias_initializer,
                    kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer)
                
            logits = tf.reshape(logits, (-1, tf.shape(logits)[1], tf.shape(logits)[2]))
            return tf.sigmoid(logits), logits 
開發者ID:zhanghaicang,項目名稱:DeepFolding,代碼行數:30,代碼來源:resnet.py

示例6: resn_with_2dfeature

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import glorot_normal_initializer [as 別名]
def resn_with_2dfeature(self, x2d, reuse=False):
        with tf.variable_scope('discriminator', reuse=reuse) as scope:
            block_num = 8
            filters = 32
            kernel_size = [4, 4]
            act = tf.nn.relu
            #kernel_initializer = tf.truncated_normal_initializer(stddev=0.01)
            kernel_initializer = tf.glorot_normal_initializer()
            #kernel_initializer = None
            bias_initializer = tf.zeros_initializer()
            #kernel_regularizer = tf.contrib.layers.l2_regularizer(scale=0.001)
            kernel_regularizer = None
            bias_regularizer = None

            prev = tf.layers.conv2d(inputs=x2d, filters=filters,
                    kernel_size=kernel_size, strides=(1,1), padding='same',
                    kernel_initializer=kernel_initializer, bias_initializer=bias_initializer,
                    kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer)
            for i in np.arange(block_num):
                conv_ = act(prev)
                conv_ = tf.layers.conv2d(inputs=conv_, filters=filters,
                        kernel_size=kernel_size, strides=(1,1), padding='same',
                        kernel_initializer=kernel_initializer, bias_initializer=bias_initializer,
                        kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer)
                conv_ = act(conv_)
                conv_ = tf.layers.conv2d(inputs=conv_, filters=filters,
                        kernel_size=kernel_size, strides=(1,1), padding='same',
                        kernel_initializer=kernel_initializer, bias_initializer=bias_initializer,
                        kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer)
                prev = tf.add(conv_, prev)

            logits = tf.layers.conv2d(inputs=prev, filters=1,
                    kernel_size=kernel_size, strides=(1,1), padding='same',
                    kernel_initializer=kernel_initializer, bias_initializer=bias_initializer,
                    kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer)

            logits = tf.reshape(logits, (-1, tf.shape(logits)[1], tf.shape(logits)[2]))
            return tf.sigmoid(logits), logits 
開發者ID:zhanghaicang,項目名稱:DeepFolding,代碼行數:40,代碼來源:resnet.py

示例7: classifier

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import glorot_normal_initializer [as 別名]
def classifier(self, x, scales, filters, repeat, training, getter=None, **kwargs):
        del kwargs
        leaky_relu = functools.partial(tf.nn.leaky_relu, alpha=0.1)
        bn_args = dict(training=training, momentum=0.999)

        def conv_args(k, f):
            return dict(padding='same',
                        kernel_initializer=tf.random_normal_initializer(stddev=tf.rsqrt(0.5 * k * k * f)))

        def residual(x0, filters, stride=1, activate_before_residual=False):
            x = leaky_relu(tf.layers.batch_normalization(x0, **bn_args))
            if activate_before_residual:
                x0 = x

            x = tf.layers.conv2d(x, filters, 3, strides=stride, **conv_args(3, filters))
            x = leaky_relu(tf.layers.batch_normalization(x, **bn_args))
            x = tf.layers.conv2d(x, filters, 3, **conv_args(3, filters))

            if x0.get_shape()[3] != filters:
                x0 = tf.layers.conv2d(x0, filters, 1, strides=stride, **conv_args(1, filters))

            return x0 + x

        with tf.variable_scope('classify', reuse=tf.AUTO_REUSE, custom_getter=getter):
            y = tf.layers.conv2d((x - self.dataset.mean) / self.dataset.std, 16, 3, **conv_args(3, 16))
            for scale in range(scales):
                y = residual(y, filters << scale, stride=2 if scale else 1, activate_before_residual=scale == 0)
                for i in range(repeat - 1):
                    y = residual(y, filters << scale)

            y = leaky_relu(tf.layers.batch_normalization(y, **bn_args))
            y = tf.reduce_mean(y, [1, 2])
            logits = tf.layers.dense(y, self.nclass, kernel_initializer=tf.glorot_normal_initializer())
        return logits 
開發者ID:uizard-technologies,項目名稱:realmix,代碼行數:36,代碼來源:models.py

示例8: project_qkv

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import glorot_normal_initializer [as 別名]
def project_qkv(input_sequnce, output_dim, use_bias_and_activation=True):
    if use_bias_and_activation:
        return tf.layers.dense(input_sequnce, output_dim, activation=tf.nn.relu, use_bias=True,
                                          kernel_initializer=tf.glorot_normal_initializer(), bias_initializer=tf.zeros_initializer())
    else:
        return tf.layers.dense(input_sequnce, output_dim, activation=tf.nn.relu, use_bias=False, kernel_initializer=tf.glorot_normal_initializer()) 
開發者ID:Artaches,項目名稱:SSAN-self-attention-sentiment-analysis-classification,代碼行數:8,代碼來源:san.py

示例9: multi_head_attention

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import glorot_normal_initializer [as 別名]
def multi_head_attention(input_sequence, dropout_keep_prob_tensor):
    '''
        Returns a self-attention layer, configured as to the parameters in the global hparams dictionary.
    '''

    # make sure the input word embedding dimension divides by the number of desired heads.
    assert hp.model_dim % hp.self_attention_heads == 0
    qkv_dim = hp.model_dim / hp.self_attention_heads

    # Construct the Q, K, V matrices
    q = project_qkv(input_sequence, hp.model_dim, hp.qkv_projections_bias_and_activation)
    k = project_qkv(input_sequence, hp.model_dim, hp.qkv_projections_bias_and_activation)
    v = project_qkv(input_sequence, hp.model_dim, hp.qkv_projections_bias_and_activation)
    qs, ks, vs = split_heads(q, k, v)

    if hp.use_relative_positions:
      outputs = dot_product_attention_relative(qs, ks, vs)
    else:
      outputs = scaled_dot_product(qs, ks, vs)

    san_output = concatenate_heads(outputs)

    if hp.self_attention_sublayer_bias_and_activation:
        san_output = tf.layers.dense(san_output, hp.model_dim, activation=tf.nn.relu, use_bias=True,
                                          kernel_initializer=tf.glorot_normal_initializer(), bias_initializer=tf.zeros_initializer())
    else:
        san_output = tf.layers.dense(san_output, hp.model_dim, activation=tf.nn.relu, use_bias=False, kernel_initializer=tf.glorot_normal_initializer())

    if hp.self_attention_sublayer_dropout:
        san_output = tf.nn.dropout(san_output, keep_prob=(dropout_keep_prob_tensor - 0.2))          # ignore some input info to regularize the model
        print("multi-head attention dropout more:", 0.2)

    return san_output 
開發者ID:Artaches,項目名稱:SSAN-self-attention-sentiment-analysis-classification,代碼行數:35,代碼來源:san.py

示例10: transformerClassifier

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import glorot_normal_initializer [as 別名]
def transformerClassifier(x_tensor, output_dim, wordIndxToVec_tensor, dropoutKeep_tensor, max_sentence_length):
    with tf.variable_scope("Embedding_Layer"):
        emb = tf.nn.embedding_lookup(wordIndxToVec_tensor, x_tensor)

    # Add positional encodings to the embeddings we feed to the encoder.
    if hp.include_positional_encoding:
        with tf.variable_scope("Add_Position_Encoding"):
            posEnc = positional_encoding(hp.model_dim, max_sentence_length)
            emb = tf.add(emb, posEnc, name="Add_Positional_Encoding")
            
    if hp.input_emb_apply_dropout:
        with tf.variable_scope("Input_Embeddings_Dropout"):
            emb = tf.nn.dropout(emb, keep_prob=dropoutKeep_tensor)          # ignore some input info to regularize the model

    for i in range(1, hp.num_layers + 1):
        with tf.variable_scope("Stack-Layer-{0}".format(i)):
            encoder_output = encoder_layer(emb, dropout_keep_prob_tensor=dropoutKeep_tensor)
            emb = encoder_output

    # Simply average the final sequence position representations to create a fixed size "sentence representation".
    sentence_representation = tf.reduce_mean(encoder_output, axis=1)    # [batch_size, model_dim]

    with tf.variable_scope("Sentence_Representation_And_Output"):
        sentence_representation = tf.layers.dense(sentence_representation, hp.model_dim, activation=tf.nn.relu, use_bias=True,
                                          kernel_initializer=tf.glorot_normal_initializer(), bias_initializer=tf.zeros_initializer())
        if hp.sentence_representation_dropout:
            sentence_representation = tf.nn.dropout(sentence_representation, keep_prob=dropoutKeep_tensor)          # ignore some input info to regularize the model

        prediction_logits = tf.layers.dense(sentence_representation, output_dim, activation=None, use_bias=False, kernel_initializer=tf.glorot_normal_initializer())

    return prediction_logits 
開發者ID:Artaches,項目名稱:SSAN-self-attention-sentiment-analysis-classification,代碼行數:33,代碼來源:san.py

示例11: create_variable_initializer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import glorot_normal_initializer [as 別名]
def create_variable_initializer(initializer_type,
                                random_seed=None,
                                data_type=tf.float32):
    """create variable initializer"""
    if initializer_type == "zero":
        initializer = tf.zeros_initializer
    elif initializer_type == "one":
        initializer = tf.ones_initializer
    elif initializer_type == "orthogonal":
        initializer = tf.orthogonal_initializer(seed=random_seed, dtype=data_type)
    elif initializer_type == "random_uniform":
        initializer = tf.random_uniform_initializer(seed=random_seed, dtype=data_type)
    elif initializer_type == "glorot_uniform":
        initializer = tf.glorot_uniform_initializer(seed=random_seed, dtype=data_type)
    elif initializer_type == "xavier_uniform":
        initializer = tf.contrib.layers.xavier_initializer(uniform=True, seed=random_seed, dtype=tf.float32)
    elif initializer_type == "random_normal":
        initializer = tf.random_normal_initializer(seed=random_seed, dtype=data_type)
    elif initializer_type == "truncated_normal":
        initializer = tf.truncated_normal_initializer(seed=random_seed, dtype=data_type)
    elif initializer_type == "glorot_normal":
        initializer = tf.glorot_normal_initializer(seed=random_seed, dtype=data_type)
    elif initializer_type == "xavier_normal":
        initializer = tf.contrib.layers.xavier_initializer(uniform=False, seed=random_seed, dtype=tf.float32)
    elif initializer_type == "variance_scaling":
        initializer = tf.contrib.layers.variance_scaling_initializer(factor=2.0,
            mode='FAN_IN', uniform=False, seed=random_seed, dtype=tf.float32)
    else:
        initializer = None
    
    return initializer 
開發者ID:stevezheng23,項目名稱:reading_comprehension_tf,代碼行數:33,代碼來源:reading_comprehension_util.py

示例12: sparse_linear

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import glorot_normal_initializer [as 別名]
def sparse_linear(xs, shape, name: str, actfunc=identity):
    assert len(shape) == 2
    w = tf.get_variable(name, initializer=tf.glorot_normal_initializer(),
                        shape=shape)
    bias = tf.Variable(tf.zeros(shape[1]))
    return actfunc(tf.sparse_tensor_dense_matmul(xs, w) + bias), w 
開發者ID:pjankiewicz,項目名稱:mercari-solution,代碼行數:8,代碼來源:tf_sparse.py

示例13: linear

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import glorot_normal_initializer [as 別名]
def linear(xs, shape, name: str, actfunc=identity):
    assert len(shape) == 2
    w = tf.get_variable(name, initializer=tf.glorot_normal_initializer(),
                        shape=shape)
    bias = tf.Variable(tf.zeros(shape[1]))
    output = tf.matmul(xs, w) + bias
    return actfunc(output) 
開發者ID:pjankiewicz,項目名稱:mercari-solution,代碼行數:9,代碼來源:tf_sparse.py

示例14: separable_conv2d

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import glorot_normal_initializer [as 別名]
def separable_conv2d(input, output, name, is_training, kernel_size, depth_multiplier=1,
                     reuse=None, with_bn=True, activation=tf.nn.elu):
    conv2d = tf.layers.separable_conv2d(input, output, kernel_size=kernel_size, strides=(1, 1), padding='VALID',
                                        activation=activation,
                                        depth_multiplier=depth_multiplier,
                                        depthwise_initializer=tf.glorot_normal_initializer(),
                                        pointwise_initializer=tf.glorot_normal_initializer(),
                                        depthwise_regularizer=tf.contrib.layers.l2_regularizer(scale=1.0),
                                        pointwise_regularizer=tf.contrib.layers.l2_regularizer(scale=1.0),
                                        reuse=reuse, name=name, use_bias=not with_bn)
    return batch_normalization(conv2d, is_training, name + '_bn', reuse) if with_bn else conv2d 
開發者ID:hkust-vgd,項目名稱:scanobjectnn,代碼行數:13,代碼來源:pointfly.py

示例15: depthwise_conv2d

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import glorot_normal_initializer [as 別名]
def depthwise_conv2d(input, depth_multiplier, name, is_training, kernel_size,
                     reuse=None, with_bn=True, activation=tf.nn.elu):
    conv2d = tf.contrib.layers.separable_conv2d(input, num_outputs=None, kernel_size=kernel_size, padding='VALID',
                                                activation_fn=activation,
                                                depth_multiplier=depth_multiplier,
                                                weights_initializer=tf.glorot_normal_initializer(),
                                                weights_regularizer=tf.contrib.layers.l2_regularizer(scale=1.0),
                                                biases_initializer=None if with_bn else tf.zeros_initializer(),
                                                biases_regularizer=None if with_bn else tf.contrib.layers.l2_regularizer(
                                                    scale=1.0),
                                                reuse=reuse, scope=name)
    return batch_normalization(conv2d, is_training, name + '_bn', reuse) if with_bn else conv2d 
開發者ID:hkust-vgd,項目名稱:scanobjectnn,代碼行數:14,代碼來源:pointfly.py


注:本文中的tensorflow.glorot_normal_initializer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。