本文整理匯總了Python中tensorflow.gfile方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.gfile方法的具體用法?Python tensorflow.gfile怎麽用?Python tensorflow.gfile使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.gfile方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: load_batch_hqjitter
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import gfile [as 別名]
def load_batch_hqjitter(dataset_dir, patches_per_img=32, min_queue=8, BURST_LENGTH=1, batch_size=32,
repeats=1, height=64, width=64, degamma=1.,
to_shift=1., upscale=1, jitter=1, smalljitter=1):
filenames = [os.path.join(dataset_dir, f) for f in gfile.ListDirectory(dataset_dir)]
filename_queue = tf.train.string_input_producer(filenames)
_, image_file = tf.WholeFileReader().read(filename_queue)
image = tf.image.decode_image(image_file)
patches = make_stack_hqjitter((tf.cast(image[0], tf.float32) / 255.)**degamma,
height, width, patches_per_img, BURST_LENGTH, to_shift, upscale, jitter)
unique = batch_size//repeats
# Batch it up.
patches = tf.train.shuffle_batch(
[patches],
batch_size=unique,
num_threads=2,
capacity=min_queue + 3 * batch_size,
enqueue_many=True,
min_after_dequeue=min_queue)
print('PATCHES =================',patches.get_shape().as_list())
patches = make_batch_hqjitter(patches, BURST_LENGTH, batch_size, repeats, height, width, to_shift, upscale, jitter, smalljitter)
return patches
示例2: tee_out
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import gfile [as 別名]
def tee_out(out_dir):
out_dir = Path(out_dir)
stdout = tempfile.NamedTemporaryFile(delete=False)
old_stdout = sys.stdout
old_stderr = sys.stderr
stderr = tempfile.NamedTemporaryFile(delete=False)
try:
with StdoutTee(stdout.name, buff=1) as out, StderrTee(stderr.name, buff=1) as err:
yield
except:
raise
finally:
sys.stdout = old_stdout
sys.stderr = old_stderr
with gfile.GFile(out_dir / 'stdout.log', 'w') as fp:
with gfile.GFile(stdout.name, 'r') as out:
fp.write(out.read())
with gfile.GFile(out_dir / 'stderr.log', 'w') as fp:
with gfile.GFile(stderr.name, 'r') as err:
fp.write(err.read())
os.remove(stdout.name)
os.remove(stderr.name)
示例3: find_files
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import gfile [as 別名]
def find_files(path, name):
if gfile.IsDirectory(path):
files = gfile.ListDirectory(path)
for p in files:
if p == name:
yield path / p
return
for p in files:
yield from find_files(path / p, name)
else:
for p in gfile.ListDirectory(path.parent):
if not fnmatch.fnmatch(path.parent / p, path.replace('[', 'asdf').replace(']', 'fdsa').replace('asdf', '[[]').replace('fdsa', '[]]')):
continue
p = Path(path.parent / p)
if p == path:
continue
yield from find_files(p, name)
示例4: read_MNIST
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import gfile [as 別名]
def read_MNIST(binarize=False):
"""Reads in MNIST images.
Args:
binarize: whether to use the fixed binarization
Returns:
x_train: 50k training images
x_valid: 10k validation images
x_test: 10k test images
"""
with gfile.FastGFile(os.path.join(config.DATA_DIR, config.MNIST_BINARIZED), 'r') as f:
(x_train, _), (x_valid, _), (x_test, _) = pickle.load(f)
if not binarize:
with gfile.FastGFile(os.path.join(config.DATA_DIR, config.MNIST_FLOAT), 'r') as f:
x_train = np.load(f).reshape(-1, 784)
return x_train, x_valid, x_test
示例5: load_batch_demosaic
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import gfile [as 別名]
def load_batch_demosaic(BURST_LENGTH, dataset_dir, batch_size=32, height=64, width=64, degamma=1., to_shift=1., upscale=1, jitter=1):
filenames = [os.path.join(dataset_dir, f) for f in gfile.ListDirectory(dataset_dir)]
filename_queue = tf.train.string_input_producer(filenames)
mosaic = None
while mosaic == None:
_, image_file = tf.WholeFileReader().read(filename_queue)
image = tf.image.decode_image(image_file)
mosaic, demosaic, shift = make_stack_demosaic((tf.cast(image[0], tf.float32) / 255.)**degamma,
height, width, 128, BURST_LENGTH, to_shift, upscale, jitter)
# Batch it up.
mosaic, demosaic, shift = tf.train.shuffle_batch(
[mosaic, demosaic, shift],
batch_size=batch_size,
num_threads=2,
capacity=500 + 3 * batch_size,
enqueue_many=True,
min_after_dequeue=100)
return mosaic, demosaic, shift
示例6: load_batch_noised
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import gfile [as 別名]
def load_batch_noised(depth, dataset_dir, batch_size=32, height=64, width=64, degamma=1., sig_range=20.):
filenames = [os.path.join(dataset_dir, f) for f in gfile.ListDirectory(dataset_dir)]
filename_queue = tf.train.string_input_producer(filenames)
noised_stack = None
while noised_stack == None:
_, image_file = tf.WholeFileReader().read(filename_queue)
image = tf.image.decode_image(image_file)
noised_stack, denoised_stack, sig_stack = make_stack_noised((tf.cast(image[0], tf.float32) / 255.)**degamma, height, width, depth, sig_range)
# Batch it up.
noised, denoised, sig = tf.train.shuffle_batch(
[noised_stack, denoised_stack, sig_stack],
batch_size=batch_size,
num_threads=2,
capacity=1024 + 3 * batch_size,
enqueue_many=True,
min_after_dequeue=500)
return noised, denoised, sig
示例7: assert_images_near
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import gfile [as 別名]
def assert_images_near(self, directory: str, only_check_size: bool = False):
"""Assert images in the golden directory match those in the test."""
# We assume all images are pngs.
glob = os.path.join(os.environ['TEST_SRCDIR'], 'isl/testdata', directory,
'*.png')
golden_image_paths = gfile.Glob(glob)
assert golden_image_paths, glob
logging.info('Golden images for test match are: %s', golden_image_paths)
for gip in golden_image_paths:
test_image_path = os.path.join(os.environ['TEST_TMPDIR'], directory,
os.path.basename(gip))
assert gfile.Exists(
test_image_path), "Test image doesn't exist: %s" % test_image_path
golden = util.read_image(gip)
test = util.read_image(test_image_path)
if only_check_size:
assert golden.shape == test.shape, (golden.shape, test.shape)
else:
np.testing.assert_allclose(golden, test, rtol=0.0001, atol=0.0001)
示例8: infer_single_image
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import gfile [as 別名]
def infer_single_image(gitapp: controller.GetInputTargetAndPredictedParameters):
"""Predicts the labels for a single image."""
if not gfile.Exists(output_directory()):
gfile.MakeDirs(output_directory())
if FLAGS.infer_channel_whitelist is not None:
infer_channel_whitelist = FLAGS.infer_channel_whitelist.split(',')
else:
infer_channel_whitelist = None
while True:
infer.infer(
gitapp=gitapp,
restore_directory=FLAGS.restore_directory or train_directory(),
output_directory=output_directory(),
extract_patch_size=CONCORDANCE_EXTRACT_PATCH_SIZE,
stitch_stride=CONCORDANCE_STITCH_STRIDE,
infer_size=FLAGS.infer_size,
channel_whitelist=infer_channel_whitelist,
simplify_error_panels=FLAGS.infer_simplify_error_panels,
)
if not FLAGS.infer_continuously:
break
示例9: _gen_example
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import gfile [as 別名]
def _gen_example(i, all_examples):
"""Saves one example to file. Also adds it to all_examples dict."""
example = dataloader.get_example_with_index(i)
if not example:
return
image_seq_stack = _stack_image_seq(example['image_seq'])
example.pop('image_seq', None) # Free up memory.
intrinsics = example['intrinsics']
fx = intrinsics[0, 0]
fy = intrinsics[1, 1]
cx = intrinsics[0, 2]
cy = intrinsics[1, 2]
save_dir = os.path.join(FLAGS.data_dir, example['folder_name'])
if not gfile.Exists(save_dir):
gfile.MakeDirs(save_dir)
img_filepath = os.path.join(save_dir, '%s.jpg' % example['file_name'])
scipy.misc.imsave(img_filepath, image_seq_stack.astype(np.uint8))
cam_filepath = os.path.join(save_dir, '%s_cam.txt' % example['file_name'])
example['cam'] = '%f,0.,%f,0.,%f,%f,0.,0.,1.' % (fx, cx, fy, cy)
with open(cam_filepath, 'w') as cam_f:
cam_f.write(example['cam'])
key = example['folder_name'] + '_' + example['file_name']
all_examples[key] = example
示例10: write_flagfile
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import gfile [as 別名]
def write_flagfile(flags_, ncf_dataset):
"""Write flagfile to begin async data generation."""
if ncf_dataset.deterministic:
flags_["seed"] = stat_utils.random_int32()
# We write to a temp file then atomically rename it to the final file,
# because writing directly to the final file can cause the data generation
# async process to read a partially written JSON file.
flagfile_temp = os.path.join(ncf_dataset.cache_paths.cache_root,
rconst.FLAGFILE_TEMP)
tf.logging.info("Preparing flagfile for async data generation in {} ..."
.format(flagfile_temp))
with tf.gfile.Open(flagfile_temp, "w") as f:
for k, v in six.iteritems(flags_):
f.write("--{}={}\n".format(k, v))
flagfile = os.path.join(ncf_dataset.cache_paths.cache_root, rconst.FLAGFILE)
tf.gfile.Rename(flagfile_temp, flagfile)
tf.logging.info(
"Wrote flagfile for async data generation in {}.".format(flagfile))
示例11: sample_expert_paths
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import gfile [as 別名]
def sample_expert_paths(num, env_str, env_spec,
load_trajectories_file=None):
"""Sample a number of expert paths randomly."""
if load_trajectories_file is not None:
if not gfile.Exists(load_trajectories_file):
assert False, 'trajectories file %s does not exist' % load_trajectories_file
with gfile.GFile(load_trajectories_file, 'r') as f:
episodes = pickle.load(f)
episodes = random.sample(episodes, num)
return [ep[1:] for ep in episodes]
return [sample_expert_path(env_str, env_spec)
for _ in xrange(num)]
示例12: path_exists
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import gfile [as 別名]
def path_exists(path):
return tf.gfile.Exists(path)
示例13: __enter__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import gfile [as 別名]
def __enter__(self):
self.file = tf.gfile.GFile(self.file_path, self.open_str)
return self.file
示例14: train
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import gfile [as 別名]
def train(self, rollouts, train_step, out_dir=None):
self.fit_dynamics(rollouts, train_step)
if train_step > 0:
self.actual_impr = self.prev_cost_estimate - self.estimate_cost()
self.step_adjust()
self.prev_cost_estimate = self.estimate_cost()
self.policy_params = self.tr_update()
self.predicted_impr = self.prev_cost_estimate - self.estimate_cost()
with gfile.GFile(out_dir / 'policy' / '{}.pkl'.format(train_step), 'wb') as fp:
pickle.dump(self.policy_params, fp)
示例15: dump_weights
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import gfile [as 別名]
def dump_weights(self, epoch, out_dir):
if out_dir is not None:
with gfile.GFile(out_dir / "weights" / ("model-%s.pkl" % epoch), 'wb') as fp:
pickle.dump(self, fp)