本文整理匯總了Python中tensorflow.gfile.GFile方法的典型用法代碼示例。如果您正苦於以下問題:Python gfile.GFile方法的具體用法?Python gfile.GFile怎麽用?Python gfile.GFile使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.gfile
的用法示例。
在下文中一共展示了gfile.GFile方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _parse_lines
# 需要導入模塊: from tensorflow import gfile [as 別名]
# 或者: from tensorflow.gfile import GFile [as 別名]
def _parse_lines(path):
"""Parses lines from IWSLT17 dataset."""
lines = []
with gfile.GFile(path) as fp:
for line in fp:
line = line.strip()
# Skip lines that are tags entirely.
if _WHOLE_TAG_REGEX.match(line):
continue
# Try to parse as content between an opening and closing tags.
match = _FLAT_HTML_REGEX.match(line)
# Always append text not contained between the tags.
if match is None:
lines.append(line)
elif (match.group(1) == match.group(3) and
match.group(1).lower() in _ALLOWED_TAGS):
lines.append(match.group(2).strip())
return lines
示例2: get_prediction_input
# 需要導入模塊: from tensorflow import gfile [as 別名]
# 或者: from tensorflow.gfile import GFile [as 別名]
def get_prediction_input(files):
"""Reads and concatenates text files in input directory.
Args:
files: List of `str`, containing absolute path to files to read.
Returns:
List of `str` containing independent text reviews.
Raises:
ValueError: If input files are empty.
"""
instances = []
for path in files:
with gfile.GFile(path, 'r') as lines:
instances += lines
if not instances:
raise ValueError('No review found in input files.')
return instances
示例3: get_csv_data
# 需要導入模塊: from tensorflow import gfile [as 別名]
# 或者: from tensorflow.gfile import GFile [as 別名]
def get_csv_data(filename):
"""Parse csv and return Dataset object with data and targets.
Create pickle data from csv, assumes the first column contains the targets
Args:
filename: complete path of the csv file
Returns:
Dataset object
"""
f = gfile.GFile(filename, 'r')
mat = []
for l in f:
row = l.strip()
row = row.replace('"', '')
row = row.split(',')
row = [float(x) for x in row]
mat.append(row)
mat = np.array(mat)
y = mat[:, 0]
X = mat[:, 1:]
data = Dataset(X, y)
return data
示例4: _build_embedding_matrix
# 需要導入模塊: from tensorflow import gfile [as 別名]
# 或者: from tensorflow.gfile import GFile [as 別名]
def _build_embedding_matrix(self):
"""Builds the embedding matrix for the model.
Returns:
words: a list of strings representing the words in the vocabulary.
embeddings: a float32 array of shape [vocab_size, embeddings_dim].
"""
logging.info('Loading Glove embeddings.')
words = []
embeddings = []
with gfile.GFile(FLAGS.glove_path) as f:
for line in f:
values = line.split()
words.append(values[0])
embeddings.append(np.asarray(values[1:], dtype='float32'))
logging.info('Found %s word vectors.', len(embeddings))
return words, np.array(embeddings)
示例5: load_word2vec
# 需要導入模塊: from tensorflow import gfile [as 別名]
# 或者: from tensorflow.gfile import GFile [as 別名]
def load_word2vec(filename, vocab, word_vecs):
"""Loads embeddings in the word2vec binary format which has a header line
containing the number of vectors and their dimensionality (two integers),
followed with number-of-vectors lines each of which is formatted as
'<word-string> <embedding-vector>'.
Args:
filename (str): Path to the embedding file.
vocab (dict): A dictionary that maps token strings to integer index.
Tokens not in :attr:`vocab` are not read.
word_vecs: A 2D numpy array of shape `[vocab_size, embed_dim]`
which is updated as reading from the file.
Returns:
The updated :attr:`word_vecs`.
"""
with gfile.GFile(filename, "rb") as fin:
header = fin.readline()
vocab_size, vector_size = [int(s) for s in header.split()]
if vector_size != word_vecs.shape[1]:
raise ValueError("Inconsistent word vector sizes: %d vs %d" %
(vector_size, word_vecs.shape[1]))
binary_len = np.dtype('float32').itemsize * vector_size
for _ in np.arange(vocab_size):
chars = []
while True:
char = fin.read(1)
if char == b' ':
break
if char != b'\n':
chars.append(char)
word = b''.join(chars)
word = tf.compat.as_text(word)
if word in vocab:
word_vecs[vocab[word]] = np.fromstring(
fin.read(binary_len), dtype='float32')
else:
fin.read(binary_len)
return word_vecs
示例6: load_glove
# 需要導入模塊: from tensorflow import gfile [as 別名]
# 或者: from tensorflow.gfile import GFile [as 別名]
def load_glove(filename, vocab, word_vecs):
"""Loads embeddings in the glove text format in which each line is
'<word-string> <embedding-vector>'. Dimensions of the embedding vector
are separated with whitespace characters.
Args:
filename (str): Path to the embedding file.
vocab (dict): A dictionary that maps token strings to integer index.
Tokens not in :attr:`vocab` are not read.
word_vecs: A 2D numpy array of shape `[vocab_size, embed_dim]`
which is updated as reading from the file.
Returns:
The updated :attr:`word_vecs`.
"""
with gfile.GFile(filename) as fin:
for line in fin:
vec = line.strip().split()
if len(vec) == 0:
continue
word, vec = vec[0], vec[1:]
word = tf.compat.as_text(word)
if word not in vocab:
continue
if len(vec) != word_vecs.shape[1]:
raise ValueError("Inconsistent word vector sizes: %d vs %d" %
(len(vec), word_vecs.shape[1]))
word_vecs[vocab[word]] = np.array([float(v) for v in vec])
return word_vecs
示例7: _load_config_yaml
# 需要導入模塊: from tensorflow import gfile [as 別名]
# 或者: from tensorflow.gfile import GFile [as 別名]
def _load_config_yaml(fname):
with gfile.GFile(fname) as config_file:
config = yaml.load(config_file)
return config
示例8: overwrite_tf_flags_with_config
# 需要導入模塊: from tensorflow import gfile [as 別名]
# 或者: from tensorflow.gfile import GFile [as 別名]
def overwrite_tf_flags_with_config(flags, config_paths):
"""Load flags from config file
Adapted from:
https://github.com/google/seq2seq/blob/7f485894d412e8d81ce0e07977831865e44309ce/bin/train.py#L244
"""
final_config = {}
if not config_paths:
return
for config_path in config_paths.split(","):
config_path = config_path.strip()
if not config_path:
continue
config_path = os.path.abspath(config_path)
tf.logging.info("Loading config from %s", config_path)
with gfile.GFile(config_path.strip()) as config_file:
config_flags = yaml.load(config_file)
final_config = _deep_merge_dict(final_config, config_flags)
# Merge flags with config values
for flag_key, flag_value in final_config.items():
if hasattr(flags, flag_key) and isinstance(getattr(flags, flag_key), dict):
merged_value = _deep_merge_dict(flag_value, getattr(flags, flag_key))
setattr(flags, flag_key, merged_value)
elif hasattr(flags, flag_key):
setattr(flags, flag_key, flag_value)
else:
tf.logging.warning("Ignoring config flag: %s", flag_key)
示例9: selfplay
# 需要導入模塊: from tensorflow import gfile [as 別名]
# 或者: from tensorflow.gfile import GFile [as 別名]
def selfplay(
load_file: "The path to the network model files",
output_dir: "Where to write the games"="data/selfplay",
holdout_dir: "Where to write the games"="data/holdout",
output_sgf: "Where to write the sgfs"="sgf/",
readouts: 'How many simulations to run per move'=100,
verbose: '>=2 will print debug info, >=3 will print boards' = 1,
resign_threshold: 'absolute value of threshold to resign at' = 0.95,
holdout_pct: 'how many games to hold out for validation' = 0.05):
qmeas.start_time('selfplay')
clean_sgf = os.path.join(output_sgf, 'clean')
full_sgf = os.path.join(output_sgf, 'full')
_ensure_dir_exists(clean_sgf)
_ensure_dir_exists(full_sgf)
_ensure_dir_exists(output_dir)
_ensure_dir_exists(holdout_dir)
with timer("Loading weights from %s ... " % load_file):
network = dual_net.DualNetwork(load_file)
with timer("Playing game"):
player = selfplay_mcts.play(
network, readouts, resign_threshold, verbose)
output_name = '{}-{}'.format(int(time.time() * 1000 * 1000), socket.gethostname())
game_data = player.extract_data()
with gfile.GFile(os.path.join(clean_sgf, '{}.sgf'.format(output_name)), 'w') as f:
f.write(player.to_sgf(use_comments=False))
with gfile.GFile(os.path.join(full_sgf, '{}.sgf'.format(output_name)), 'w') as f:
f.write(player.to_sgf())
tf_examples = preprocessing.make_dataset_from_selfplay(game_data)
# Hold out 5% of games for evaluation.
if random.random() < holdout_pct:
fname = os.path.join(holdout_dir, "{}.tfrecord.zz".format(output_name))
else:
fname = os.path.join(output_dir, "{}.tfrecord.zz".format(output_name))
preprocessing.write_tf_examples(fname, tf_examples)
qmeas.stop_time('selfplay')
示例10: selfplay_cache_model
# 需要導入模塊: from tensorflow import gfile [as 別名]
# 或者: from tensorflow.gfile import GFile [as 別名]
def selfplay_cache_model(
network: "The path to the network model files",
output_dir: "Where to write the games"="data/selfplay",
holdout_dir: "Where to write the games"="data/holdout",
output_sgf: "Where to write the sgfs"="sgf/",
readouts: 'How many simulations to run per move'=100,
verbose: '>=2 will print debug info, >=3 will print boards' = 1,
resign_threshold: 'absolute value of threshold to resign at' = 0.95,
holdout_pct: 'how many games to hold out for validation' = 0.05):
qmeas.start_time('selfplay')
clean_sgf = os.path.join(output_sgf, 'clean')
full_sgf = os.path.join(output_sgf, 'full')
_ensure_dir_exists(clean_sgf)
_ensure_dir_exists(full_sgf)
_ensure_dir_exists(output_dir)
_ensure_dir_exists(holdout_dir)
with timer("Playing game"):
player = selfplay_mcts.play(
network, readouts, resign_threshold, verbose)
output_name = '{}-{}'.format(int(time.time() * 1000 * 1000), socket.gethostname())
game_data = player.extract_data()
with gfile.GFile(os.path.join(clean_sgf, '{}.sgf'.format(output_name)), 'w') as f:
f.write(player.to_sgf(use_comments=False))
with gfile.GFile(os.path.join(full_sgf, '{}.sgf'.format(output_name)), 'w') as f:
f.write(player.to_sgf())
tf_examples = preprocessing.make_dataset_from_selfplay(game_data)
# Hold out 5% of games for evaluation.
if random.random() < holdout_pct:
fname = os.path.join(holdout_dir, "{}.tfrecord.zz".format(output_name))
else:
fname = os.path.join(output_dir, "{}.tfrecord.zz".format(output_name))
preprocessing.write_tf_examples(fname, tf_examples)
qmeas.stop_time('selfplay')
示例11: _load
# 需要導入模塊: from tensorflow import gfile [as 別名]
# 或者: from tensorflow.gfile import GFile [as 別名]
def _load(path):
with gfile.GFile(path) as f:
result = json.load(f)
result["path"] = path
return result
示例12: _get_unk_mapping
# 需要導入模塊: from tensorflow import gfile [as 別名]
# 或者: from tensorflow.gfile import GFile [as 別名]
def _get_unk_mapping(filename):
"""Reads a file that specifies a mapping from source to target tokens.
The file must contain lines of the form <source>\t<target>"
Args:
filename: path to the mapping file
Returns:
A dictionary that maps from source -> target tokens.
"""
with gfile.GFile(filename, "r") as mapping_file:
lines = mapping_file.readlines()
mapping = dict([_.split("\t")[0:2] for _ in lines])
mapping = {k.strip(): v.strip() for k, v in mapping.items()}
return mapping
開發者ID:akanimax,項目名稱:natural-language-summary-generation-from-structured-data,代碼行數:17,代碼來源:decode_text.py
示例13: get_vocab_info
# 需要導入模塊: from tensorflow import gfile [as 別名]
# 或者: from tensorflow.gfile import GFile [as 別名]
def get_vocab_info(vocab_path):
"""Creates a `VocabInfo` instance that contains the vocabulary size and
the special vocabulary for the given file.
Args:
vocab_path: Path to a vocabulary file with one word per line.
Returns:
A VocabInfo tuple.
"""
with gfile.GFile(vocab_path) as file:
vocab_size = sum(1 for _ in file)
special_vocab = get_special_vocab(vocab_size)
return VocabInfo(vocab_path, vocab_size, special_vocab)
示例14: dump
# 需要導入模塊: from tensorflow import gfile [as 別名]
# 或者: from tensorflow.gfile import GFile [as 別名]
def dump(self, model_dir):
"""Dumps the options to a file in the model directory.
Args:
model_dir: Path to the model directory. The options will be
dumped into a file in this directory.
"""
gfile.MakeDirs(model_dir)
options_dict = {
"model_class": self.model_class,
"model_params": self.model_params,
}
with gfile.GFile(TrainOptions.path(model_dir), "wb") as file:
file.write(json.dumps(options_dict).encode("utf-8"))
示例15: load
# 需要導入模塊: from tensorflow import gfile [as 別名]
# 或者: from tensorflow.gfile import GFile [as 別名]
def load(model_dir):
""" Loads options from the given model directory.
Args:
model_dir: Path to the model directory.
"""
with gfile.GFile(TrainOptions.path(model_dir), "rb") as file:
options_dict = json.loads(file.read().decode("utf-8"))
options_dict = defaultdict(None, options_dict)
return TrainOptions(
model_class=options_dict["model_class"],
model_params=options_dict["model_params"])