當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.get_variable_scope方法代碼示例

本文整理匯總了Python中tensorflow.get_variable_scope方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.get_variable_scope方法的具體用法?Python tensorflow.get_variable_scope怎麽用?Python tensorflow.get_variable_scope使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.get_variable_scope方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testTrainEvalWithReuse

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_variable_scope [as 別名]
def testTrainEvalWithReuse(self):
    train_batch_size = 2
    eval_batch_size = 1
    train_height, train_width = 231, 231
    eval_height, eval_width = 281, 281
    num_classes = 1000
    with self.test_session():
      train_inputs = tf.random_uniform(
          (train_batch_size, train_height, train_width, 3))
      logits, _ = overfeat.overfeat(train_inputs)
      self.assertListEqual(logits.get_shape().as_list(),
                           [train_batch_size, num_classes])
      tf.get_variable_scope().reuse_variables()
      eval_inputs = tf.random_uniform(
          (eval_batch_size, eval_height, eval_width, 3))
      logits, _ = overfeat.overfeat(eval_inputs, is_training=False,
                                    spatial_squeeze=False)
      self.assertListEqual(logits.get_shape().as_list(),
                           [eval_batch_size, 2, 2, num_classes])
      logits = tf.reduce_mean(logits, [1, 2])
      predictions = tf.argmax(logits, 1)
      self.assertEquals(predictions.get_shape().as_list(), [eval_batch_size]) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:24,代碼來源:overfeat_test.py

示例2: testTrainEvalWithReuse

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_variable_scope [as 別名]
def testTrainEvalWithReuse(self):
    train_batch_size = 2
    eval_batch_size = 1
    train_height, train_width = 224, 224
    eval_height, eval_width = 256, 256
    num_classes = 1000
    with self.test_session():
      train_inputs = tf.random_uniform(
          (train_batch_size, train_height, train_width, 3))
      logits, _ = vgg.vgg_a(train_inputs)
      self.assertListEqual(logits.get_shape().as_list(),
                           [train_batch_size, num_classes])
      tf.get_variable_scope().reuse_variables()
      eval_inputs = tf.random_uniform(
          (eval_batch_size, eval_height, eval_width, 3))
      logits, _ = vgg.vgg_a(eval_inputs, is_training=False,
                            spatial_squeeze=False)
      self.assertListEqual(logits.get_shape().as_list(),
                           [eval_batch_size, 2, 2, num_classes])
      logits = tf.reduce_mean(logits, [1, 2])
      predictions = tf.argmax(logits, 1)
      self.assertEquals(predictions.get_shape().as_list(), [eval_batch_size]) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:24,代碼來源:vgg_test.py

示例3: conv_tower_fn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_variable_scope [as 別名]
def conv_tower_fn(self, images, is_training=True, reuse=None):
    """Computes convolutional features using the InceptionV3 model.

    Args:
      images: A tensor of shape [batch_size, height, width, channels].
      is_training: whether is training or not.
      reuse: whether or not the network and its variables should be reused. To
        be able to reuse 'scope' must be given.

    Returns:
      A tensor of shape [batch_size, OH, OW, N], where OWxOH is resolution of
      output feature map and N is number of output features (depends on the
      network architecture).
    """
    mparams = self._mparams['conv_tower_fn']
    logging.debug('Using final_endpoint=%s', mparams.final_endpoint)
    with tf.variable_scope('conv_tower_fn/INCE'):
      if reuse:
        tf.get_variable_scope().reuse_variables()
      with slim.arg_scope(inception.inception_v3_arg_scope()):
        net, _ = inception.inception_v3_base(
            images, final_endpoint=mparams.final_endpoint)
      return net 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:25,代碼來源:model.py

示例4: testTrainEvalWithReuse

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_variable_scope [as 別名]
def testTrainEvalWithReuse(self):
    train_batch_size = 5
    eval_batch_size = 2
    height, width = 150, 150
    num_classes = 1000
    with self.test_session() as sess:
      train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
      inception.inception_v3(train_inputs, num_classes)
      tf.get_variable_scope().reuse_variables()
      eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
      logits, _ = inception.inception_v3(eval_inputs, num_classes,
                                         is_training=False)
      predictions = tf.argmax(logits, 1)
      sess.run(tf.global_variables_initializer())
      output = sess.run(predictions)
      self.assertEquals(output.shape, (eval_batch_size,)) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:18,代碼來源:inception_test.py

示例5: call

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_variable_scope [as 別名]
def call(self, inputs, **kwargs):
    del kwargs
    features = inputs
    set_custom_getter_compose(self._custom_getter)
    tf.get_variable_scope().set_initializer(
        optimize.get_variable_initializer(self.hparams))
    with self._eager_var_store.as_default():
      self._fill_problem_hparams_features(features)
      sharded_features = self._shard_features(features)
      sharded_logits, losses = self.model_fn_sharded(sharded_features)
      if isinstance(sharded_logits, dict):
        concat_logits = {}
        for k, v in six.iteritems(sharded_logits):
          concat_logits[k] = tf.concat(v, 0)
        return concat_logits, losses
      else:
        return tf.concat(sharded_logits, 0), losses 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:19,代碼來源:t2t_model.py

示例6: top

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_variable_scope [as 別名]
def top(self, body_output, _):
    # TODO(lukaszkaiser): is this a universal enough way to get channels?
    num_channels = self._model_hparams.problem.num_channels
    with tf.variable_scope("rgb_softmax"):
      body_output_shape = common_layers.shape_list(body_output)
      reshape_shape = body_output_shape[:3]
      reshape_shape.extend([num_channels, self.top_dimensionality])
      res = tf.layers.dense(body_output, self.top_dimensionality * num_channels)
      res = tf.reshape(res, reshape_shape)
      if not tf.get_variable_scope().reuse:
        res_argmax = tf.argmax(res, axis=-1)
        tf.summary.image(
            "result",
            common_layers.tpu_safe_image_summary(res_argmax),
            max_outputs=1)
      return res 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:18,代碼來源:modalities.py

示例7: dense

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_variable_scope [as 別名]
def dense(x, size, name, weight_init=None, bias_init=0, weight_loss_dict=None, reuse=None):
    with tf.variable_scope(name, reuse=reuse):
        assert (len(tf.get_variable_scope().name.split('/')) == 2)

        w = tf.get_variable("w", [x.get_shape()[1], size], initializer=weight_init)
        b = tf.get_variable("b", [size], initializer=tf.constant_initializer(bias_init))
        weight_decay_fc = 3e-4

        if weight_loss_dict is not None:
            weight_decay = tf.multiply(tf.nn.l2_loss(w), weight_decay_fc, name='weight_decay_loss')
            if weight_loss_dict is not None:
                weight_loss_dict[w] = weight_decay_fc
                weight_loss_dict[b] = 0.0

            tf.add_to_collection(tf.get_variable_scope().name.split('/')[0] + '_' + 'losses', weight_decay)

        return tf.nn.bias_add(tf.matmul(x, w), b) 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:19,代碼來源:utils.py

示例8: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_variable_scope [as 別名]
def __init__(self, name, window_size, obs_stack, output_size, num_support):
        self.window_size = window_size
        self.obs_stack = obs_stack
        self.output_size = output_size
        self.num_support = num_support
        with tf.variable_scope(name):
            self.input = tf.placeholder(tf.float32, shape=[None, self.window_size, self.window_size, self.obs_stack])
            self.conv1 = tf.layers.conv2d(inputs=self.input, filters=32, kernel_size=[8, 8], strides=[4, 4], padding='VALID', activation=tf.nn.relu)
            self.conv2 = tf.layers.conv2d(inputs=self.conv1, filters=64, kernel_size=[4, 4], strides=[2, 2], padding='VALID', activation=tf.nn.relu)
            self.conv3 = tf.layers.conv2d(inputs=self.conv2, filters=64, kernel_size=[3, 3], strides=[1, 1], padding='VALID', activation=tf.nn.relu)
            self.reshape = tf.reshape(self.conv3, [-1, 7 * 7 * 64])
            self.l1 = tf.layers.dense(inputs=self.reshape, units=512, activation=tf.nn.relu)
            self.l2 = tf.layers.dense(inputs=self.l1, units=self.output_size * self.num_support, activation=None)
            self.net = tf.reshape(self.l2, [-1, self.output_size, self.num_support])

            self.scope = tf.get_variable_scope().name 
開發者ID:RLOpensource,項目名稱:tensorflow_RL,代碼行數:18,代碼來源:discrete.py

示例9: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_variable_scope [as 別名]
def __init__(self, name, window_size, obs_stack):
        self.window_size = window_size
        self.obs_stack = obs_stack

        with tf.variable_scope(name):
            self.input = tf.placeholder(dtype=tf.float32, shape=[None, window_size, window_size, obs_stack])
            self.conv1 = tf.layers.conv2d(inputs=self.input, filters=32, kernel_size=[8, 8], strides=[4, 4], padding='VALID', activation=tf.nn.relu)
            self.conv2 = tf.layers.conv2d(inputs=self.conv1, filters=64, kernel_size=[4, 4], strides=[2, 2], padding='VALID', activation=tf.nn.relu)
            self.conv3 = tf.layers.conv2d(inputs=self.conv2, filters=64, kernel_size=[3, 3], strides=[1, 1], padding='VALID', activation=tf.nn.relu)

            self.reshape = tf.reshape(self.conv3, [-1, 7 * 7 * 64])
            self.dense_3 = tf.layers.dense(inputs=self.reshape, units=512, activation=tf.nn.relu)
            
            self.critic = tf.layers.dense(inputs=self.dense_3, units=1, activation=None)

            self.scope = tf.get_variable_scope().name 
開發者ID:RLOpensource,項目名稱:tensorflow_RL,代碼行數:18,代碼來源:discrete.py

示例10: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_variable_scope [as 別名]
def __init__(self, hparams=None):
        EncoderBase.__init__(self, hparams)
        use_bias = self._hparams.use_bias

        with tf.variable_scope(self.variable_scope):
            if self._hparams.initializer:
                tf.get_variable_scope().set_initializer(
                    layers.get_initializer(self._hparams.initializer))

            self.Q_dense = tf.layers.Dense(self._hparams.num_units,
                                           use_bias=use_bias,
                                           name='query')
            self.K_dense = tf.layers.Dense(self._hparams.num_units,
                                           use_bias=use_bias,
                                           name='key')
            self.V_dense = tf.layers.Dense(self._hparams.num_units,
                                           use_bias=use_bias,
                                           name='value')
            self.O_dense = tf.layers.Dense(self._hparams.output_dim,
                                           use_bias=use_bias,
                                           name='output') 
開發者ID:qkaren,項目名稱:Counterfactual-StoryRW,代碼行數:23,代碼來源:multihead_attention.py

示例11: assert_rank

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_variable_scope [as 別名]
def assert_rank(tensor, expected_rank, name=None):
    """Raises an exception if the tensor rank is not of the expected rank.

    Args:
      tensor: A tf.Tensor to check the rank of.
      expected_rank: Python integer or list of integers, expected rank.
      name: Optional name of the tensor for the error message.

    Raises:
      ValueError: If the expected shape doesn't match the actual shape.
    """
    if name is None:
        name = tensor.name

    expected_rank_dict = {}
    if isinstance(expected_rank, six.integer_types):
        expected_rank_dict[expected_rank] = True
    else:
        for x in expected_rank:
            expected_rank_dict[x] = True

    actual_rank = tensor.shape.ndims
    if actual_rank not in expected_rank_dict:
        scope_name = tf.get_variable_scope().name
        raise ValueError(
            "For the tensor `%s` in scope `%s`, the actual rank "
            "`%d` (shape = %s) is not equal to the expected rank `%s`" %
            (name, scope_name, actual_rank, str(tensor.shape), str(expected_rank))) 
開發者ID:Socialbird-AILab,項目名稱:BERT-Classification-Tutorial,代碼行數:30,代碼來源:modeling.py

示例12: _init_graph

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_variable_scope [as 別名]
def _init_graph(self):
        # Collect inputs.
        self.input_names = []
        for param in inspect.signature(self._build_func).parameters.values():
            if param.kind == param.POSITIONAL_OR_KEYWORD and param.default is param.empty:
                self.input_names.append(param.name)
        self.num_inputs = len(self.input_names)
        assert self.num_inputs >= 1

        # Choose name and scope.
        if self.name is None:
            self.name = self._build_func_name
        self.scope = tf.get_default_graph().unique_name(self.name.replace('/', '_'), mark_as_used=False)
        
        # Build template graph.
        with tf.variable_scope(self.scope, reuse=tf.AUTO_REUSE):
            assert tf.get_variable_scope().name == self.scope
            with absolute_name_scope(self.scope): # ignore surrounding name_scope
                with tf.control_dependencies(None): # ignore surrounding control_dependencies
                    self.input_templates = [tf.placeholder(tf.float32, name=name) for name in self.input_names]
                    out_expr = self._build_func(*self.input_templates, is_template_graph=True, **self.static_kwargs)
            
        # Collect outputs.
        assert is_tf_expression(out_expr) or isinstance(out_expr, tuple)
        self.output_templates = [out_expr] if is_tf_expression(out_expr) else list(out_expr)
        self.output_names = [t.name.split('/')[-1].split(':')[0] for t in self.output_templates]
        self.num_outputs = len(self.output_templates)
        assert self.num_outputs >= 1
        
        # Populate remaining fields.
        self.input_shapes   = [shape_to_list(t.shape) for t in self.input_templates]
        self.output_shapes  = [shape_to_list(t.shape) for t in self.output_templates]
        self.input_shape    = self.input_shapes[0]
        self.output_shape   = self.output_shapes[0]
        self.vars           = OrderedDict([(self.get_var_localname(var), var) for var in tf.global_variables(self.scope + '/')])
        self.trainables     = OrderedDict([(self.get_var_localname(var), var) for var in tf.trainable_variables(self.scope + '/')])

    # Run initializers for all variables defined by this network. 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:40,代碼來源:tfutil.py

示例13: get_output_for

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_variable_scope [as 別名]
def get_output_for(self, *in_expr, return_as_list=False, **dynamic_kwargs):
        assert len(in_expr) == self.num_inputs
        all_kwargs = dict(self.static_kwargs)
        all_kwargs.update(dynamic_kwargs)
        with tf.variable_scope(self.scope, reuse=True):
            assert tf.get_variable_scope().name == self.scope
            named_inputs = [tf.identity(expr, name=name) for expr, name in zip(in_expr, self.input_names)]
            out_expr = self._build_func(*named_inputs, **all_kwargs)
        assert is_tf_expression(out_expr) or isinstance(out_expr, tuple)
        if return_as_list:
            out_expr = [out_expr] if is_tf_expression(out_expr) else list(out_expr)
        return out_expr

    # Get the local name of a given variable, excluding any surrounding name scopes. 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:16,代碼來源:tfutil.py

示例14: main

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_variable_scope [as 別名]
def main():
    train_x = tf.placeholder(tf.float32)
    train_label = tf.placeholder(tf.float32)
    test_x = tf.placeholder(tf.float32)
    test_label = tf.placeholder(tf.float32)

    with tf.variable_scope("inference"):
        train_y = inference(train_x)
        tf.get_variable_scope().reuse_variables()
        test_y = inference(test_x)

    train_loss = tf.square(train_y - train_label)
    test_loss = tf.square(test_y - test_label)
    opt = tf.train.GradientDescentOptimizer(0.002)
    train_op = opt.minimize(train_loss)

    init = tf.global_variables_initializer()

    train_data_x, train_data_label = get_data(1000)
    test_data_x, test_data_label = get_data(1)

    with tf.Session() as sess:
        sess.run(init)
        for i in range(1000):
            sess.run(train_op, feed_dict={train_x: train_data_x[i],
                                          train_label: train_data_label[i]})
            if i % 10 == 0:
                test_loss_value = sess.run(test_loss, feed_dict={test_x:test_data_x[0],
                                                                 test_label:test_data_label[0]})
                print("step %d eval loss is %.3f" % (i, test_loss_value)) 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:32,代碼來源:1_basic_linear.py

示例15: decode

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_variable_scope [as 別名]
def decode(self,prev_state,prev_input,timestep):
        with tf.variable_scope("loop"):
            if timestep > 0:
                tf.get_variable_scope().reuse_variables()

            # Run the cell on a combination of the previous input and state
            output, state = self.cell(prev_input,prev_state)

            # Attention mechanism
            masked_scores = self.attention(self.encoder_output, output)

            # Multinomial distribution
            prob = distr.Categorical(masked_scores)

            # Sample from distribution
            position = prob.sample()
            position = tf.cast(position,tf.int32)
            self.positions.append(position)

            # Store log_prob for backprop
            self.log_softmax.append(prob.log_prob(position))

            # Update current city and mask
            self.current_city = tf.one_hot(position, self.seq_length)
            self.mask = self.mask + self.current_city

            # Retrieve decoder's new input
            new_decoder_input = tf.gather(self.h,position)[0]

            return state, new_decoder_input 
開發者ID:MichelDeudon,項目名稱:neural-combinatorial-optimization-rl-tensorflow,代碼行數:32,代碼來源:decoder.py


注:本文中的tensorflow.get_variable_scope方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。