當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.get_logger方法代碼示例

本文整理匯總了Python中tensorflow.get_logger方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.get_logger方法的具體用法?Python tensorflow.get_logger怎麽用?Python tensorflow.get_logger使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.get_logger方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: should_stop

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_logger [as 別名]
def should_stop(self):
    """Returns ``True`` if early stopping conditions are met."""
    if self._early_stopping is None:
      return False
    target_metric = self._early_stopping.metric
    higher_is_better = self._is_higher_better_for_metric(target_metric)
    metrics = self._get_metric_history(target_metric)
    should_stop = early_stop(
        metrics,
        self._early_stopping.steps,
        min_improvement=self._early_stopping.min_improvement,
        higher_is_better=higher_is_better)
    if should_stop:
      tf.get_logger().warning(
          "Evaluation metric '%s' did not improve more than %f in the last %d evaluations",
          target_metric,
          self._early_stopping.min_improvement,
          self._early_stopping.steps)
    return should_stop 
開發者ID:OpenNMT,項目名稱:OpenNMT-tf,代碼行數:21,代碼來源:evaluation.py

示例2: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_logger [as 別名]
def __init__(self, variables, step, decay=0.9999):
    """Initializes the moving average object.

    Args:
      variables: The list of variable for which to maintain a moving average.
      step: The training step counter as a ``tf.Variable``.
      decay: The decay rate of the exponential moving average. Usually close to
        1, e.g. 0.9999, see the complete formula on
        https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage.

    Raises:
      TypeError: is :obj:`step` is not a ``tf.Variable``.
    """
    if not isinstance(step, tf.Variable):
      raise TypeError("step should be a tf.Variable")
    if decay < 0.9 or decay > 1:
      tf.get_logger().warning("Moving average decay should be close to 1 (e.g. 0.9999) but you "
                              "passed %f, is it correct? See https://www.tensorflow.org/api_docs"
                              "/python/tf/train/ExponentialMovingAverage for details about the "
                              "formula and recommended decay values.")
    self._ema = tf.train.ExponentialMovingAverage(decay, num_updates=step)
    self._variables = variables
    self.update() 
開發者ID:OpenNMT,項目名稱:OpenNMT-tf,代碼行數:25,代碼來源:training.py

示例3: _check_static_batch_beam_maybe

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_logger [as 別名]
def _check_static_batch_beam_maybe(shape, batch_size, beam_width):
    """Raises an exception if dimensions are known statically and can not be
    reshaped to [batch_size, beam_size, -1]."""
    reshaped_shape = tf.TensorShape([batch_size, beam_width, None])
    assert len(shape.dims) > 0
    if batch_size is None or shape[0] is None:
        return True  # not statically known => no check
    if shape[0] == batch_size * beam_width:
        return True  # flattened, matching
    has_second_dim = shape.ndims >= 2 and shape[1] is not None
    if has_second_dim and shape[0] == batch_size and shape[1] == beam_width:
        return True  # non-flattened, matching
    # Otherwise we could not find a match and warn:
    tf.get_logger().warn(
        "TensorArray reordering expects elements to be "
        "reshapable to %s which is incompatible with the "
        "current shape %s. Consider setting "
        "reorder_tensor_arrays to False to disable TensorArray "
        "reordering during the beam search." % (reshaped_shape, shape)
    )
    return False 
開發者ID:tensorflow,項目名稱:addons,代碼行數:23,代碼來源:beam_search_decoder.py

示例4: main

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_logger [as 別名]
def main(m_path, img_path, out_dir):
    logger = get_logger("inference")
    logger.info(f"generating image from {img_path}")
    imported = tf.saved_model.load(m_path)
    f = imported.signatures["serving_default"]
    img = np.array(Image.open(img_path).convert("RGB"))
    img = np.expand_dims(img, 0).astype(np.float32) / 127.5 - 1
    out = f(tf.constant(img))['output_1']
    out = ((out.numpy().squeeze() + 1) * 127.5).astype(np.uint8)
    if out_dir != "" and not os.path.isdir(out_dir):
        os.makedirs(out_dir)
    if out_dir == "":
        out_dir = "."
    out_path = os.path.join(out_dir, os.path.split(img_path)[1])
    imwrite(out_path, out)
    logger.info(f"generated image saved to {out_path}") 
開發者ID:mnicnc404,項目名稱:CartoonGan-tensorflow,代碼行數:18,代碼來源:inference_with_saved_model.py

示例5: main

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_logger [as 別名]
def main(m_path, img_path, out_dir, light=False):
    logger = get_logger("inference")
    logger.info(f"generating image from {img_path}")
    try:
        g = Generator(light=light)
        g.load_weights(tf.train.latest_checkpoint(m_path))
    except ValueError as e:
        logger.error(e)
        logger.error("Failed to load specified weight.")
        logger.error("If you trained your model with --light, "
                     "consider adding --light when executing this script; otherwise, "
                     "do not add --light when executing this script.")
        exit(1)
    img = np.array(Image.open(img_path).convert("RGB"))
    img = np.expand_dims(img, 0).astype(np.float32) / 127.5 - 1
    out = ((g(img).numpy().squeeze() + 1) * 127.5).astype(np.uint8)
    if out_dir != "" and not os.path.isdir(out_dir):
        os.makedirs(out_dir)
    if out_dir == "":
        out_dir = "."
    out_path = os.path.join(out_dir, os.path.split(img_path)[1])
    imwrite(out_path, out)
    logger.info(f"generated image saved to {out_path}") 
開發者ID:mnicnc404,項目名稱:CartoonGan-tensorflow,代碼行數:25,代碼來源:inference_with_ckpt.py

示例6: test_hyperband_integration

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_logger [as 別名]
def test_hyperband_integration(tmp_dir):
    tuner = hyperband_module.Hyperband(
        objective='val_loss',
        hypermodel=build_model,
        hyperband_iterations=2,
        max_epochs=6,
        factor=3,
        directory=tmp_dir)

    x, y = np.ones((2, 5)), np.ones((2, 1))
    tuner.search(x, y, validation_data=(x, y))

    # Make sure Oracle is registering new HPs.
    updated_hps = tuner.oracle.get_space().values
    assert 'units1' in updated_hps
    assert 'bias1' in updated_hps

    tf.get_logger().setLevel(logging.ERROR)

    best_score = tuner.oracle.get_best_trials()[0].score
    best_model = tuner.get_best_models()[0]
    assert best_model.evaluate(x, y) == best_score 
開發者ID:keras-team,項目名稱:keras-tuner,代碼行數:24,代碼來源:hyperband_test.py

示例7: main

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_logger [as 別名]
def main():
  parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
  parser.add_argument("run", choices=["train", "translate"],
                      help="Run type.")
  parser.add_argument("--src", required=True,
                      help="Path to the source file.")
  parser.add_argument("--tgt",
                      help="Path to the target file.")
  parser.add_argument("--src_vocab", required=True,
                      help="Path to the source vocabulary.")
  parser.add_argument("--tgt_vocab", required=True,
                      help="Path to the target vocabulary.")
  parser.add_argument("--model_dir", default="checkpoint",
                      help="Directory where checkpoint are written.")
  args = parser.parse_args()

  data_config = {
      "source_vocabulary": args.src_vocab,
      "target_vocabulary": args.tgt_vocab
  }

  model.initialize(data_config)

  checkpoint_manager = tf.train.CheckpointManager(checkpoint, args.model_dir, max_to_keep=5)
  if checkpoint_manager.latest_checkpoint is not None:
    tf.get_logger().info("Restoring parameters from %s", checkpoint_manager.latest_checkpoint)
    checkpoint.restore(checkpoint_manager.latest_checkpoint)

  if args.run == "train":
    train(args.src, args.tgt, checkpoint_manager)
  elif args.run == "translate":
    translate(args.src) 
開發者ID:OpenNMT,項目名稱:OpenNMT-tf,代碼行數:34,代碼來源:custom_transformer_training.py

示例8: _record_results

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_logger [as 別名]
def _record_results(self, step, results):
    # Clear history for steps that are greater than step.
    while self._metrics_history and self._metrics_history[-1][0] > step:
      self._metrics_history.pop()
    self._metrics_history.append((step, dict(results)))
    tf.get_logger().info(
        "Evaluation result for step %d: %s",
        step,
        " ; ".join("%s = %f" % (k, v) for k, v in results.items()))
    with self._summary_writer.as_default():
      for key, value in results.items():
        tf.summary.scalar("%s/%s" % (_SUMMARIES_SCOPE, key), value, step=step)
      self._summary_writer.flush() 
開發者ID:OpenNMT,項目名稱:OpenNMT-tf,代碼行數:15,代碼來源:evaluation.py

示例9: _maybe_export

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_logger [as 別名]
def _maybe_export(self, step, results):
    if self._export_on_best is None or not self.is_best(self._export_on_best):
      return
    export_dir = os.path.join(self._export_dir, str(step))
    tf.get_logger().info("Exporting model to %s (best %s so far: %f)",
                         export_dir, self._export_on_best, results[self._export_on_best])
    self._model.export(export_dir, exporter=self._exporter) 
開發者ID:OpenNMT,項目名稱:OpenNMT-tf,代碼行數:9,代碼來源:evaluation.py

示例10: _set_log_level

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_logger [as 別名]
def _set_log_level(log_level):
  tf.get_logger().setLevel(log_level)
  os.environ["TF_CPP_MIN_LOG_LEVEL"] = str(_PYTHON_TO_TENSORFLOW_LOGGING_LEVEL[log_level]) 
開發者ID:OpenNMT,項目名稱:OpenNMT-tf,代碼行數:5,代碼來源:main.py

示例11: save

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_logger [as 別名]
def save(self, step=None):
    """Saves a checkpoint.

    Args:
      step: The step to save for. If ``None``, get the value from ``optimizer.iterations``.

    Returns:
      The path to the saved checkpoint.
    """
    if step is None:
      step = self._optimizer.iterations
    path = self._checkpoint_manager.save(checkpoint_number=step)
    tf.get_logger().info("Saved checkpoint %s", path)
    return path 
開發者ID:OpenNMT,項目名稱:OpenNMT-tf,代碼行數:16,代碼來源:checkpoint.py

示例12: average_checkpoints_into_layer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_logger [as 別名]
def average_checkpoints_into_layer(checkpoints, layer, layer_prefix):
  """Updates the layer weights with their average value in the checkpoints.

  Args:
    checkpoints: A non empty list of checkpoint paths.
    layer: A ``tf.keras.layers.Layer`` instance.
    layer_prefix: The name/scope that prefixes the layer variables names in the
      checkpoints.

  Raises:
    ValueError: if :obj:`checkpoints` is empty.
    ValueError: if :obj:`layer` is not already built.

  See Also:
    :func:`opennmt.utils.average_checkpoints`
  """
  if not checkpoints:
    raise ValueError("There should be at least one checkpoint")
  if not layer.built:
    raise ValueError("The layer should be built before calling this function")

  # Reset the layer variables to 0.
  for variable in layer.variables:
    variable.assign(tf.zeros_like(variable))

  # Get a map from variable names in the checkpoint to variables in the layer.
  _, names_to_variables = misc.get_variables_name_mapping(layer, root_key=layer_prefix)

  num_checkpoints = len(checkpoints)
  tf.get_logger().info("Averaging %d checkpoints...", num_checkpoints)
  for checkpoint_path in checkpoints:
    tf.get_logger().info("Reading checkpoint %s...", checkpoint_path)
    reader = tf.train.load_checkpoint(checkpoint_path)
    for path in reader.get_variable_to_shape_map().keys():
      if not path.startswith(layer_prefix) or ".OPTIMIZER_SLOT" in path:
        continue
      variable = names_to_variables[path]
      value = reader.get_tensor(path)
      variable.assign_add(value / num_checkpoints) 
開發者ID:OpenNMT,項目名稱:OpenNMT-tf,代碼行數:41,代碼來源:checkpoint.py

示例13: export

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_logger [as 別名]
def export(self, model, export_dir):
    """Exports :obj:`model` to :obj:`export_dir`.

    Raises:
      ValueError: if :obj:`model` is not supported by this exporter.
    """
    self._export_model(model, export_dir)
    with tempfile.TemporaryDirectory() as tmp_dir:
      extra_assets = model.export_assets(tmp_dir)
      if extra_assets:
        assets_extra = os.path.join(export_dir, "assets.extra")
        tf.io.gfile.makedirs(assets_extra)
        for filename, path in extra_assets.items():
          tf.io.gfile.copy(path, os.path.join(assets_extra, filename), overwrite=True)
        tf.get_logger().info("Extra assets written to: %s", assets_extra) 
開發者ID:OpenNMT,項目名稱:OpenNMT-tf,代碼行數:17,代碼來源:exporters.py

示例14: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_logger [as 別名]
def __init__(self,
               model,
               config,
               auto_config=False,
               mixed_precision=False,
               seed=None):
    """Initializes the runner parameters.

    Args:
      model: A :class:`opennmt.models.Model` instance to run or a callable that
        returns such instance.
      config: The run configuration.
      auto_config: If ``True``, use automatic configuration values defined by
        :obj:`model`.
      mixed_precision: Enable mixed precision.
      seed: The random seed to set.

    Raises:
      TypeError: if :obj:`model` is not a :class:`opennmt.models.Model` instance
        or a callable.
    """
    if isinstance(model, models.Model):
      self._model = model
      self._model_fn = lambda: misc.clone_layer(model)
    elif callable(model):
      self._model = model()
      self._model_fn = model
    else:
      raise TypeError("model should be a opennmt.models.Model instance or a callable")
    tf.get_logger().info("Using model:\n%s", self._model)
    self._optimizer = None
    self._config = copy.deepcopy(config)
    self._auto_config = auto_config
    self._mixed_precision = mixed_precision
    if mixed_precision:
      tf.config.optimizer.set_experimental_options({"auto_mixed_precision": True})
    if seed is not None:
      np.random.seed(seed)
      random.seed(seed)
      tf.random.set_seed(seed) 
開發者ID:OpenNMT,項目名稱:OpenNMT-tf,代碼行數:42,代碼來源:runner.py

示例15: compute_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_logger [as 別名]
def compute_loss(self, outputs, labels, training=True):
    params = self.params
    if not isinstance(outputs, dict):
      outputs = dict(logits=outputs)
    logits = outputs["logits"]
    noisy_logits = outputs.get("noisy_logits")
    attention = outputs.get("attention")
    if noisy_logits is not None and params.get("contrastive_learning"):
      return losses.max_margin_loss(
          logits,
          labels["ids_out"],
          labels["length"],
          noisy_logits,
          labels["noisy_ids_out"],
          labels["noisy_length"],
          eta=params.get("max_margin_eta", 0.1))
    loss, loss_normalizer, loss_token_normalizer = losses.cross_entropy_sequence_loss(
        logits,
        labels["ids_out"],
        labels["length"],
        label_smoothing=params.get("label_smoothing", 0.0),
        average_in_time=params.get("average_loss_in_time", False),
        training=training)
    if training:
      gold_alignments = labels.get("alignment")
      guided_alignment_type = params.get("guided_alignment_type")
      if gold_alignments is not None and guided_alignment_type is not None:
        if attention is None:
          tf.get_logger().warning("This model did not return attention vectors; "
                                  "guided alignment will not be applied")
        else:
          loss += losses.guided_alignment_cost(
              attention[:, :-1],  # Do not constrain last timestep.
              gold_alignments,
              sequence_length=self.labels_inputter.get_length(labels, ignore_special_tokens=True),
              cost_type=guided_alignment_type,
              weight=params.get("guided_alignment_weight", 1))
    return loss, loss_normalizer, loss_token_normalizer 
開發者ID:OpenNMT,項目名稱:OpenNMT-tf,代碼行數:40,代碼來源:sequence_to_sequence.py


注:本文中的tensorflow.get_logger方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。