當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.get_collection方法代碼示例

本文整理匯總了Python中tensorflow.get_collection方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.get_collection方法的具體用法?Python tensorflow.get_collection怎麽用?Python tensorflow.get_collection使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.get_collection方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_params

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_collection [as 別名]
def get_params(self):
        """
        Provides access to the model's parameters.
        :return: A list of all Variables defining the model parameters.
        """
        # Catch eager execution and assert function overload.
        try:
            if tf.executing_eagerly():
                raise NotImplementedError("For Eager execution - get_params "
                                          "must be overridden.")
        except AttributeError:
            pass

        # For Graoh based execution
        scope_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
                                       self.scope)
        return scope_vars 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:19,代碼來源:model.py

示例2: testCreateLogisticClassifier

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_collection [as 別名]
def testCreateLogisticClassifier(self):
    g = tf.Graph()
    with g.as_default():
      tf.set_random_seed(0)
      tf_inputs = tf.constant(self._inputs, dtype=tf.float32)
      tf_labels = tf.constant(self._labels, dtype=tf.float32)

      model_fn = LogisticClassifier
      clone_args = (tf_inputs, tf_labels)
      deploy_config = model_deploy.DeploymentConfig(num_clones=1)

      self.assertEqual(slim.get_variables(), [])
      clones = model_deploy.create_clones(deploy_config, model_fn, clone_args)
      clone = clones[0]
      self.assertEqual(len(slim.get_variables()), 2)
      for v in slim.get_variables():
        self.assertDeviceEqual(v.device, 'CPU:0')
        self.assertDeviceEqual(v.value().device, 'CPU:0')
      self.assertEqual(clone.outputs.op.name,
                       'LogisticClassifier/fully_connected/Sigmoid')
      self.assertEqual(clone.scope, '')
      self.assertDeviceEqual(clone.device, 'GPU:0')
      self.assertEqual(len(slim.losses.get_losses()), 1)
      update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
      self.assertEqual(update_ops, []) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:27,代碼來源:model_deploy_test.py

示例3: testCreateSingleclone

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_collection [as 別名]
def testCreateSingleclone(self):
    g = tf.Graph()
    with g.as_default():
      tf.set_random_seed(0)
      tf_inputs = tf.constant(self._inputs, dtype=tf.float32)
      tf_labels = tf.constant(self._labels, dtype=tf.float32)

      model_fn = BatchNormClassifier
      clone_args = (tf_inputs, tf_labels)
      deploy_config = model_deploy.DeploymentConfig(num_clones=1)

      self.assertEqual(slim.get_variables(), [])
      clones = model_deploy.create_clones(deploy_config, model_fn, clone_args)
      clone = clones[0]
      self.assertEqual(len(slim.get_variables()), 5)
      for v in slim.get_variables():
        self.assertDeviceEqual(v.device, 'CPU:0')
        self.assertDeviceEqual(v.value().device, 'CPU:0')
      self.assertEqual(clone.outputs.op.name,
                       'BatchNormClassifier/fully_connected/Sigmoid')
      self.assertEqual(clone.scope, '')
      self.assertDeviceEqual(clone.device, 'GPU:0')
      self.assertEqual(len(slim.losses.get_losses()), 1)
      update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
      self.assertEqual(len(update_ops), 2) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:27,代碼來源:model_deploy_test.py

示例4: _get_variables_to_train

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_collection [as 別名]
def _get_variables_to_train():
  """Returns a list of variables to train.

  Returns:
    A list of variables to train by the optimizer.
  """
  if FLAGS.trainable_scopes is None:
    return tf.trainable_variables()
  else:
    scopes = [scope.strip() for scope in FLAGS.trainable_scopes.split(',')]

  variables_to_train = []
  for scope in scopes:
    variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope)
    variables_to_train.extend(variables)
  return variables_to_train 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:18,代碼來源:train_image_classifier.py

示例5: _add_loss_summaries

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_collection [as 別名]
def _add_loss_summaries(total_loss):
  """Add summaries for losses in CIFAR-10 model.

  Generates moving average for all losses and associated summaries for
  visualizing the performance of the network.

  Args:
    total_loss: Total loss from loss().
  Returns:
    loss_averages_op: op for generating moving averages of losses.
  """
  # Compute the moving average of all individual losses and the total loss.
  loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
  losses = tf.get_collection('losses')
  loss_averages_op = loss_averages.apply(losses + [total_loss])

  # Attach a scalar summary to all individual losses and the total loss; do the
  # same for the averaged version of the losses.
  for l in losses + [total_loss]:
    # Name each loss as '(raw)' and name the moving average version of the loss
    # as the original loss name.
    tf.summary.scalar(l.op.name + ' (raw)', l)
    tf.summary.scalar(l.op.name, loss_averages.average(l))

  return loss_averages_op 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:27,代碼來源:cifar10.py

示例6: add_variable

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_collection [as 別名]
def add_variable(var, restore=True):
  """Adds a variable to the MODEL_VARIABLES collection.

    Optionally it will add the variable to  the VARIABLES_TO_RESTORE collection.
  Args:
    var: a variable.
    restore: whether the variable should be added to the
      VARIABLES_TO_RESTORE collection.

  """
  collections = [MODEL_VARIABLES]
  if restore:
    collections.append(VARIABLES_TO_RESTORE)
  for collection in collections:
    if var not in tf.get_collection(collection):
      tf.add_to_collection(collection, var) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:18,代碼來源:variables.py

示例7: get_unique_variable

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_collection [as 別名]
def get_unique_variable(name):
  """Gets the variable uniquely identified by that name.

  Args:
    name: a name that uniquely identifies the variable.

  Returns:
    a tensorflow variable.

  Raises:
    ValueError: if no variable uniquely identified by the name exists.
  """
  candidates = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, name)
  if not candidates:
    raise ValueError('Couldnt find variable %s' % name)

  for candidate in candidates:
    if candidate.op.name == name:
      return candidate
  raise ValueError('Variable %s does not uniquely identify a variable', name) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:22,代碼來源:variables.py

示例8: testTotalLossWithoutRegularization

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_collection [as 別名]
def testTotalLossWithoutRegularization(self):
    batch_size = 5
    height, width = 299, 299
    num_classes = 1001
    with self.test_session():
      inputs = tf.random_uniform((batch_size, height, width, 3))
      dense_labels = tf.random_uniform((batch_size, num_classes))
      with slim.arg_scope([slim.ops.conv2d, slim.ops.fc], weight_decay=0):
        logits, end_points = slim.inception.inception_v3(
            inputs,
            num_classes=num_classes)
        # Cross entropy loss for the main softmax prediction.
        slim.losses.cross_entropy_loss(logits,
                                       dense_labels,
                                       label_smoothing=0.1,
                                       weight=1.0)
        # Cross entropy loss for the auxiliary softmax head.
        slim.losses.cross_entropy_loss(end_points['aux_logits'],
                                       dense_labels,
                                       label_smoothing=0.1,
                                       weight=0.4,
                                       scope='aux_loss')
      losses = tf.get_collection(slim.losses.LOSSES_COLLECTION)
      self.assertEqual(len(losses), 2) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:26,代碼來源:collections_test.py

示例9: build_graph

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_collection [as 別名]
def build_graph(self,state,global_step):
        '''
        Builds the computation graph for the critic
        Inputs:
            states: tf placeholder inputs to network
        '''
        
        self.global_step = global_step
        self.outputs = [state]
        with tf.variable_scope(self.scope, reuse=self.reuse):
            for i in range(1,len(self.units)-1):
                layer = tf.layers.dense(self.outputs[i-1], self.units[i], tf.nn.relu, trainable=self.trainable)
                self.outputs.append(layer)
            layer = tf.layers.dense(self.outputs[-1], self.units[-1], trainable=self.trainable)
            self.outputs.append(layer)
        self.params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.scope) 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:18,代碼來源:networks.py

示例10: __call__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_collection [as 別名]
def __call__(self, input):
        with tf.variable_scope(self.name, reuse=self._reuse):
            if not self._reuse:
                print('\033[93m'+self.name+'\033[0m')
            _ = input
            num_channel = [32, 64, 128, 256, 256, 512]
            num_layer = np.ceil(np.log2(min(_.shape.as_list()[1:3]))).astype(np.int)
            for i in range(num_layer):
                ch = num_channel[i] if i < len(num_channel) else 512
                _ = conv2d(_, ch, self._is_train, info=not self._reuse,
                           norm=self._norm_type, name='conv{}'.format(i+1))
            _ = conv2d(_, int(num_channel[i]/4), self._is_train, k=1, s=1,
                       info=not self._reuse, norm='None', name='conv{}'.format(i+2))
            _ = conv2d(_, self._num_class+1, self._is_train, k=1, s=1, info=not self._reuse,
                       activation_fn=None, norm='None',
                       name='conv{}'.format(i+3))
            _ = tf.squeeze(_)
            if not self._reuse: 
                log.info('discriminator output {}'.format(_.shape.as_list()))
            self._reuse = True
            self.var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.name)
            return tf.nn.sigmoid(_), _ 
開發者ID:clvrai,項目名稱:SSGAN-Tensorflow,代碼行數:24,代碼來源:discriminator.py

示例11: scope_vars

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_collection [as 別名]
def scope_vars(scope, trainable_only=False):
    """
    Get variables inside a scope
    The scope can be specified as a string
    Parameters
    ----------
    scope: str or VariableScope
        scope in which the variables reside.
    trainable_only: bool
        whether or not to return only the variables that were marked as trainable.
    Returns
    -------
    vars: [tf.Variable]
        list of variables in `scope`.
    """
    return tf.get_collection(
        tf.GraphKeys.TRAINABLE_VARIABLES if trainable_only else tf.GraphKeys.GLOBAL_VARIABLES,
        scope=scope if isinstance(scope, str) else scope.name
    ) 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:21,代碼來源:build_graph.py

示例12: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_collection [as 別名]
def __init__(self, ob_dim, ac_dim): #pylint: disable=W0613
        X = tf.placeholder(tf.float32, shape=[None, ob_dim*2+ac_dim*2+2]) # batch of observations
        vtarg_n = tf.placeholder(tf.float32, shape=[None], name='vtarg')
        wd_dict = {}
        h1 = tf.nn.elu(dense(X, 64, "h1", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict))
        h2 = tf.nn.elu(dense(h1, 64, "h2", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict))
        vpred_n = dense(h2, 1, "hfinal", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict)[:,0]
        sample_vpred_n = vpred_n + tf.random_normal(tf.shape(vpred_n))
        wd_loss = tf.get_collection("vf_losses", None)
        loss = tf.reduce_mean(tf.square(vpred_n - vtarg_n)) + tf.add_n(wd_loss)
        loss_sampled = tf.reduce_mean(tf.square(vpred_n - tf.stop_gradient(sample_vpred_n)))
        self._predict = U.function([X], vpred_n)
        optim = kfac.KfacOptimizer(learning_rate=0.001, cold_lr=0.001*(1-0.9), momentum=0.9, \
                                    clip_kl=0.3, epsilon=0.1, stats_decay=0.95, \
                                    async=1, kfac_update=2, cold_iter=50, \
                                    weight_decay_dict=wd_dict, max_grad_norm=None)
        vf_var_list = []
        for var in tf.trainable_variables():
            if "vf" in var.name:
                vf_var_list.append(var)

        update_op, self.q_runner = optim.minimize(loss, loss_sampled, var_list=vf_var_list)
        self.do_update = U.function([X, vtarg_n], update_op) #pylint: disable=E1101
        U.initialize() # Initialize uninitialized TF variables 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:26,代碼來源:value_functions.py

示例13: get_trainable_variables

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_collection [as 別名]
def get_trainable_variables():
    scopes = [scope.strip() for scope in TRAINABLE_SCOPES.split(',')]
    variables_to_train = []
    for scope in scopes:
        variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope)
        variables_to_train.extend(variables)
    return variables_to_train 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:9,代碼來源:train.py

示例14: build_optim

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_collection [as 別名]
def build_optim(self):
        # Update moving_mean and moving_variance for batch normalization layers
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        with tf.control_dependencies(update_ops):

            with tf.name_scope('reinforce'):
                # Actor learning rate
                self.lr1 = tf.train.exponential_decay(self.lr1_start, self.global_step, self.lr1_decay_step,self.lr1_decay_rate, staircase=False, name="learning_rate1")
                # Optimizer
                self.opt1 = tf.train.AdamOptimizer(learning_rate=self.lr1,beta1=0.9,beta2=0.99, epsilon=0.0000001)
                # Discounted reward
                self.reward_baseline = tf.stop_gradient(self.reward - self.critic.predictions) # [Batch size, 1]
                variable_summaries('reward_baseline',self.reward_baseline, with_max_min = True)
                # Loss
                self.loss1 = tf.reduce_mean(self.reward_baseline*self.log_softmax,0)
                tf.summary.scalar('loss1', self.loss1)
                # Minimize step
                gvs = self.opt1.compute_gradients(self.loss1)
                capped_gvs = [(tf.clip_by_norm(grad, 1.), var) for grad, var in gvs if grad is not None] # L2 clip
                self.train_step1 = self.opt1.apply_gradients(capped_gvs, global_step=self.global_step)

            with tf.name_scope('state_value'):
                # Critic learning rate
                self.lr2 = tf.train.exponential_decay(self.lr2_start, self.global_step2, self.lr2_decay_step,self.lr2_decay_rate, staircase=False, name="learning_rate1")
                # Optimizer
                self.opt2 = tf.train.AdamOptimizer(learning_rate=self.lr2,beta1=0.9,beta2=0.99, epsilon=0.0000001)
                # Loss
                self.loss2 = tf.losses.mean_squared_error(self.reward, self.critic.predictions, weights = 1.0)
                tf.summary.scalar('loss2', self.loss1)
                # Minimize step
                gvs2 = self.opt2.compute_gradients(self.loss2)
                capped_gvs2 = [(tf.clip_by_norm(grad, 1.), var) for grad, var in gvs2 if grad is not None] # L2 clip
                self.train_step2 = self.opt1.apply_gradients(capped_gvs2, global_step=self.global_step2) 
開發者ID:MichelDeudon,項目名稱:neural-combinatorial-optimization-rl-tensorflow,代碼行數:35,代碼來源:actor.py

示例15: build_optim

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import get_collection [as 別名]
def build_optim(self):
        # Update moving_mean and moving_variance for batch normalization layers
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        with tf.control_dependencies(update_ops):

            with tf.name_scope('baseline'):
                # Update baseline
                reward_mean, reward_var = tf.nn.moments(self.reward,axes=[0])
                self.base_op = tf.assign(self.avg_baseline, self.alpha*self.avg_baseline+(1.0-self.alpha)*reward_mean)
                tf.summary.scalar('average baseline',self.avg_baseline)

            with tf.name_scope('reinforce'):
                # Actor learning rate
                self.lr1 = tf.train.exponential_decay(self.lr1_start, self.global_step, self.lr1_decay_step,self.lr1_decay_rate, staircase=False, name="learning_rate1")
                # Optimizer
                self.opt1 = tf.train.AdamOptimizer(learning_rate=self.lr1,beta1=0.9,beta2=0.99, epsilon=0.0000001)
                # Discounted reward
                self.reward_baseline = tf.stop_gradient(self.reward - self.avg_baseline - self.critic.predictions) # [Batch size, 1] 
                variable_summaries('reward_baseline',self.reward_baseline, with_max_min = True)
                # Loss
                self.loss1 = tf.reduce_mean(self.reward_baseline*self.log_softmax,0)
                tf.summary.scalar('loss1', self.loss1)
                # Minimize step
                gvs = self.opt1.compute_gradients(self.loss1)
                capped_gvs = [(tf.clip_by_norm(grad, 1.), var) for grad, var in gvs if grad is not None] # L2 clip
                self.train_step1 = self.opt1.apply_gradients(capped_gvs, global_step=self.global_step)

            with tf.name_scope('state_value'):
                # Critic learning rate
                self.lr2 = tf.train.exponential_decay(self.lr2_start, self.global_step2, self.lr2_decay_step,self.lr2_decay_rate, staircase=False, name="learning_rate1")
                # Optimizer
                self.opt2 = tf.train.AdamOptimizer(learning_rate=self.lr2,beta1=0.9,beta2=0.99, epsilon=0.0000001)
                # Loss
                weights_ = 1.0 #weights_ = tf.exp(self.log_softmax-tf.reduce_max(self.log_softmax)) # probs / max_prob
                self.loss2 = tf.losses.mean_squared_error(self.reward - self.avg_baseline, self.critic.predictions, weights = weights_)
                tf.summary.scalar('loss2', self.loss1)
                # Minimize step
                gvs2 = self.opt2.compute_gradients(self.loss2)
                capped_gvs2 = [(tf.clip_by_norm(grad, 1.), var) for grad, var in gvs2 if grad is not None] # L2 clip
                self.train_step2 = self.opt1.apply_gradients(capped_gvs2, global_step=self.global_step2) 
開發者ID:MichelDeudon,項目名稱:neural-combinatorial-optimization-rl-tensorflow,代碼行數:42,代碼來源:actor.py


注:本文中的tensorflow.get_collection方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。