本文整理匯總了Python中tensorflow.function方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.function方法的具體用法?Python tensorflow.function怎麽用?Python tensorflow.function使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.function方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: compute_model
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import function [as 別名]
def compute_model(self, inputs, variables, training):
"""Compute the model for a set of inputs and variables.
Parameters
----------
inputs: list of tensors
the inputs to the model
variables: list of tensors
the values to use for the model's variables. This might be the actual
variables (as returned by the MetaLearner's variables property), or
alternatively it might be the values of those variables after one or more
steps of gradient descent for the current task.
training: bool
indicates whether the model is being invoked for training or prediction
Returns
-------
(loss, outputs) where loss is the value of the model's loss function, and
outputs is a list of the model's outputs
"""
raise NotImplemented("Subclasses must implement this")
示例2: _create_gradient_fn
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import function [as 別名]
def _create_gradient_fn(self, variables):
"""Create a function that computes gradients and applies them to the model.
Because of the way TensorFlow function tracing works, we need to create a
separate function for each new set of variables.
"""
@tf.function(experimental_relax_shapes=True)
def apply_gradient_for_batch(inputs, labels, weights, loss):
with tf.GradientTape() as tape:
outputs = self.model(inputs, training=True)
if isinstance(outputs, tf.Tensor):
outputs = [outputs]
if self._loss_outputs is not None:
outputs = [outputs[i] for i in self._loss_outputs]
batch_loss = loss(outputs, labels, weights)
if variables is None:
vars = self.model.trainable_variables
else:
vars = variables
grads = tape.gradient(batch_loss, vars)
self._tf_optimizer.apply_gradients(zip(grads, vars))
self._global_step.assign_add(1)
return batch_loss
return apply_gradient_for_batch
示例3: set_dataset_ready
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import function [as 別名]
def set_dataset_ready(self, dataset, set_map: bool = True, set_batch: bool = True):
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
if set_map:
try:
if self.mode == "triplet":
dataset = dataset.map(self.mapper_triplet, tf.data.experimental.AUTOTUNE)
elif self.mode == "softmax" or self.mode == "sparse softmax":
dataset = dataset.map(self.mapper_softmax, tf.data.experimental.AUTOTUNE)
elif self.mode == "arcface":
dataset = dataset.map(self.mapper_arcface, tf.data.experimental.AUTOTUNE)
else:
raise Exception(f"There is no mapping function for {self.mode}, please fix.")
except ValueError:
raise Exception(f"You must set dataset for {self.mode} if you want to use.")
if set_batch:
dataset = dataset.batch(self.batch_size)
print("Dataset ready for stream.")
return dataset
示例4: test_none_state_equal_to_initial_state
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import function [as 別名]
def test_none_state_equal_to_initial_state(self):
"""Tests that not providing state is the same as initial_state."""
x = tf.constant(1.0)
encoder = simple_encoder.SimpleEncoder(
core_encoder.EncoderComposer(
test_utils.PlusOneOverNEncodingStage()).make(),
tf.TensorSpec.from_tensor(x))
state = encoder.initial_state()
stateful_iteration = _make_iteration_function(encoder)
@tf.function
def stateless_iteration(x):
encoded_x, _ = encoder.encode(x)
decoded_x = encoder.decode(encoded_x)
return encoded_x, decoded_x
_, encoded_x_stateful, decoded_x_stateful, _ = self.evaluate(
stateful_iteration(x, state))
encoded_x_stateless, decoded_x_stateless = self.evaluate(
stateless_iteration(x))
self.assertAllClose(encoded_x_stateful, encoded_x_stateless)
self.assertAllClose(decoded_x_stateful, decoded_x_stateless)
示例5: compute_loss
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import function [as 別名]
def compute_loss(self, pi_, z_, policy_head, value_head):
# loss
with tf.name_scope("loss"):
policy_loss = tf.keras.losses.categorical_crossentropy(y_true=pi_, y_pred=policy_head, from_logits=True)
policy_loss = tf.reduce_mean(policy_loss)
value_loss = tf.keras.losses.mean_squared_error(z_, value_head)
value_loss = tf.reduce_mean(value_loss)
# summary_ops_v2.scalar('mse_loss', value_loss)
regularizer = tf.keras.regularizers.l2(self.c_l2)
regular_variables = self.model.trainable_variables
l2_loss = self.apply_regularization(regularizer, regular_variables)
# self.loss = value_loss - policy_loss + l2_loss
self.loss = value_loss + policy_loss + l2_loss
# summary_ops_v2.scalar('loss', self.loss)
return self.loss
# TODO(yashkatariya): Add tf.function when b/123315763 is resolved
# @tf.function
示例6: test_optimizer
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import function [as 別名]
def test_optimizer(should_quantize):
x = QuantizedVariable.from_variable(get_var(1.0), quantizer=lambda x: -x)
opt = tf.keras.optimizers.SGD(1.0)
def loss():
with context.quantized_scope(should_quantize):
return x + 1.0
@tf.function
def f():
opt.minimize(loss, var_list=[x])
f()
if should_quantize:
assert evaluate(x) == 2.0
with context.quantized_scope(should_quantize):
assert evaluate(x) == -2.0
else:
assert evaluate(x) == 0.0
示例7: mlp
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import function [as 別名]
def mlp(input_tensor, layers, activ_fn=tf.nn.relu, layer_norm=False):
"""
Create a multi-layer fully connected neural network.
:param input_tensor: (tf.placeholder)
:param layers: ([int]) Network architecture
:param activ_fn: (tf.function) Activation function
:param layer_norm: (bool) Whether to apply layer normalization or not
:return: (tf.Tensor)
"""
output = input_tensor
for i, layer_size in enumerate(layers):
output = tf.layers.dense(output, layer_size, name='fc' + str(i))
if layer_norm:
output = tf.contrib.layers.layer_norm(output, center=True, scale=True)
output = activ_fn(output)
return output
示例8: evaluate
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import function [as 別名]
def evaluate(self, dataset, epoch):
""" evaluate the model """
loss_metric = tf.keras.metrics.Mean(name="AverageLoss")
loss, metrics = None, None
evaluate_step = self.evaluate_step
if self.hparams.enable_tf_function:
logging.info("please be patient, enable tf.function, it takes time ...")
evaluate_step = tf.function(evaluate_step, input_signature=self.sample_signature)
self.model.reset_metrics() # init metric.result() with 0
for batch, samples in enumerate(dataset):
samples = self.model.prepare_samples(samples)
loss, metrics = evaluate_step(samples)
if batch % self.hparams.log_interval == 0:
logging.info(self.metric_checker(loss, metrics, -2))
total_loss = sum(list(loss.values())) if isinstance(loss, dict) else loss
loss_metric.update_state(total_loss)
logging.info(self.metric_checker(loss_metric.result(), metrics, evaluate_epoch=epoch))
self.model.reset_metrics()
return loss_metric.result(), metrics
示例9: train
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import function [as 別名]
def train(self, dataset, total_batches=-1):
""" Update the model in 1 epoch """
train_step = self.train_step
if self.hparams.enable_tf_function:
logging.info("please be patient, enable tf.function, it takes time ...")
train_step = tf.function(train_step, input_signature=self.sample_signature)
for batch, samples in enumerate(dataset.take(total_batches)):
# train 1 step
samples = self.model.prepare_samples(samples)
loss, metrics = train_step(samples)
# Horovod: broadcast initial variable states from rank 0 to all other processes.
# This is necessary to ensure consistent initialization of all workers when
# training is started with random weights or restored from a checkpoint.
#
# Note: broadcast should be done after the first gradient step to ensure optimizer
# initialization.
if batch == 0:
hvd.broadcast_variables(self.model.trainable_variables, root_rank=0)
hvd.broadcast_variables(self.optimizer.variables(), root_rank=0)
if batch % self.hparams.log_interval == 0 and hvd.rank() == 0:
logging.info(self.metric_checker(loss, metrics))
self.model.reset_metrics()
示例10: parallel_projection2d
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import function [as 別名]
def parallel_projection2d(volume, geometry):
"""
Wrapper function for making the layer call.
Args:
volume: Input volume to project.
geometry: Corresponding GeometryParallel2D Object defining parameters.
Returns:
Initialized lme_custom_ops.parallel_projection2d layer.
"""
batch = np.shape(volume)[0]
return pyronn_layers.parallel_projection2d(volume,
projection_shape=geometry.sinogram_shape,
volume_origin=np.broadcast_to(geometry.volume_origin, [batch, *np.shape(geometry.volume_origin)]),
detector_origin=np.broadcast_to(geometry.detector_origin, [batch, *np.shape(geometry.detector_origin)]),
volume_spacing=np.broadcast_to(geometry.volume_spacing, [batch, *np.shape(geometry.volume_spacing)]),
detector_spacing=np.broadcast_to(geometry.detector_spacing, [batch, *np.shape(geometry.detector_spacing)]),
ray_vectors=np.broadcast_to(geometry.ray_vectors, [batch, *np.shape(geometry.ray_vectors)]))
示例11: fan_projection2d
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import function [as 別名]
def fan_projection2d(volume, geometry):
"""
Wrapper function for making the layer call.
Args:
volume: Input volume to project.
geometry: Corresponding GeometryFan2D Object defining parameters.
Returns:
Initialized lme_custom_ops.fan_projection2d layer.
"""
batch = np.shape(volume)[0]
return pyronn_layers.fan_projection2d(volume,
projection_shape=geometry.sinogram_shape,
volume_origin=np.broadcast_to(geometry.volume_origin, [batch, *np.shape(geometry.volume_origin)]),
detector_origin=np.broadcast_to(geometry.detector_origin, [batch, *np.shape(geometry.detector_origin)]),
volume_spacing=np.broadcast_to(geometry.volume_spacing, [batch, *np.shape(geometry.volume_spacing)]),
detector_spacing=np.broadcast_to(geometry.detector_spacing, [batch, *np.shape(geometry.detector_spacing)]),
source_2_isocenter_distance=np.broadcast_to(geometry.source_isocenter_distance, [batch, *np.shape(geometry.source_isocenter_distance)]),
source_2_detector_distance=np.broadcast_to(geometry.source_detector_distance, [batch, *np.shape(geometry.source_detector_distance)]),
central_ray_vectors=np.broadcast_to(geometry.central_ray_vectors, [batch, *np.shape(geometry.central_ray_vectors)]))
示例12: build_single_label_dataset
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import function [as 別名]
def build_single_label_dataset(dataset, label_key, desired_label):
"""Build a new dataset that only yields examples with a particular label.
This can be used for creating pathological non-iid (in label space) datasets.
Args:
dataset: the base `tf.data.Dataset` that yields examples that are structures
of string key -> tensor value pairs.
label_key: the `str` key that holds the label for the example.
desired_label: the label value to restrict the resulting dataset to.
Returns:
A `tf.data.Dataset` that is composed of only examples that have a label
matching `desired_label`.
"""
@tf.function
def _select_on_label(example):
return example[label_key] == desired_label
return dataset.filter(_select_on_label)
示例13: from_tff_result
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import function [as 別名]
def from_tff_result(cls, anon_tuple):
# TODO(b/123092620): These conversions should not be needed.
return assert_no_anon_tuples(
cls(
generator_weights=list(anon_tuple.generator_weights),
discriminator_weights=list(anon_tuple.discriminator_weights),
counters=anon_tuple.counters._asdict(),
# TODO(b/123092620): Using _asdict(recursive=True) is a work-around
# which at least gets rid of AnonymousTuples to allow the use of
# tf.nest. However, really these should be the appropriate
# namedtuple types expected by the TF Privacy code. This
# means that in some cases ServerState.dp_averaging_state
# needs dict-style access, and sometimes attribute-style.
# However, since this is really opaque state, this only comes up
# in the test.
dp_averaging_state=anon_tuple.dp_averaging_state._asdict(
recursive=True)))
# Set cmp=False to get a default hash function for tf.function.
示例14: _apply_gradients
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import function [as 別名]
def _apply_gradients(self, inputs, actions_matrix, discounted_rewards,
advantages, action_prob):
"""Compute the gradient of the loss function for a batch and update the model."""
vars = self._model.model.trainable_variables
with tf.GradientTape() as tape:
outputs = self._model.model(inputs)
loss = self._model._loss_fn(outputs, [actions_matrix],
[discounted_rewards, advantages, action_prob])
gradients = tape.gradient(loss, vars)
self._model._tf_optimizer.apply_gradients(zip(gradients, vars))
示例15: predict
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import function [as 別名]
def predict(self, state, use_saved_states=True, save_states=True):
"""Compute the policy's output predictions for a state.
If the policy involves recurrent layers, this method can preserve their internal
states between calls. Use the use_saved_states and save_states arguments to specify
how it should behave.
Parameters
----------
state: array or list of arrays
the state of the environment for which to generate predictions
use_saved_states: bool
if True, the states most recently saved by a previous call to predict() or select_action()
will be used as the initial states. If False, the internal states of all recurrent layers
will be set to the initial values defined by the policy before computing the predictions.
save_states: bool
if True, the internal states of all recurrent layers at the end of the calculation
will be saved, and any previously saved states will be discarded. If False, the
states at the end of the calculation will be discarded, and any previously saved
states will be kept.
Returns
-------
the array of action probabilities, and the estimated value function
"""
results = self._predict_outputs(state, use_saved_states, save_states)
return [results[i] for i in (self._action_prob_index, self._value_index)]