當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.floor_div方法代碼示例

本文整理匯總了Python中tensorflow.floor_div方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.floor_div方法的具體用法?Python tensorflow.floor_div怎麽用?Python tensorflow.floor_div使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.floor_div方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_sequence_lengths

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import floor_div [as 別名]
def get_sequence_lengths( widths ):    
    """Tensor calculating output sequence length from original image widths"""
    kernel_sizes = [params[1] for params in layer_params]

    with tf.variable_scope("sequence_length"):
        conv1_trim = tf.constant( 2 * (kernel_sizes[0] // 2),
                                  dtype=tf.int32,
                                  name='conv1_trim' )
        one = tf.constant( 1, dtype=tf.int32, name='one' )
        two = tf.constant( 2, dtype=tf.int32, name='two' )
        after_conv1 = tf.subtract( widths, conv1_trim, name='after_conv1' )
        after_pool2 = tf.floor_div( after_conv1, two, name='after_pool2' )
        after_pool4 = tf.subtract( after_pool2, one, name='after_pool4' )
        after_pool6 = tf.subtract( after_pool4, one, name='after_pool6' ) 
        after_pool8 = tf.identity( after_pool6, name='after_pool8' )
    return after_pool8 
開發者ID:weinman,項目名稱:cnn_lstm_ctc_ocr,代碼行數:18,代碼來源:model.py

示例2: _upsample_rois

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import floor_div [as 別名]
def _upsample_rois(scores, bboxes, keep_top_k):
    # upsample with replacement
    # filter out paddings
    bboxes = tf.boolean_mask(bboxes, scores > 0.)
    scores = tf.boolean_mask(scores, scores > 0.)

    scores, bboxes = tf.cond(tf.less(tf.shape(scores)[0], 1), lambda: (tf.constant([1.]), tf.constant([[0.2, 0.2, 0.8, 0.8]])), lambda: (scores, bboxes))
    #scores = tf.Print(scores,[scores])
    def upsampel_impl():
        num_bboxes = tf.shape(scores)[0]
        left_count = keep_top_k - num_bboxes

        select_indices = tf.random_shuffle(tf.range(num_bboxes))[:tf.floormod(left_count, num_bboxes)]
        #### zero
        select_indices = tf.concat([tf.tile(tf.range(num_bboxes), [tf.floor_div(left_count, num_bboxes) + 1]), select_indices], axis = 0)

        return [tf.gather(scores, select_indices), tf.gather(bboxes, select_indices)]
    return tf.cond(tf.shape(scores)[0] < keep_top_k, lambda : upsampel_impl(), lambda : [scores, bboxes]) 
開發者ID:HiKapok,項目名稱:X-Detector,代碼行數:20,代碼來源:xception_body.py

示例3: get_control_flag

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import floor_div [as 別名]
def get_control_flag(control, field):
    return tf.equal(tf.mod(tf.floor_div(control, field), 2), 1) 
開發者ID:GaoangW,項目名稱:TNT,代碼行數:4,代碼來源:facenet.py

示例4: get_control_flag

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import floor_div [as 別名]
def get_control_flag(control, field):

    logger.info(msg="get_control_flag called")
    return tf.equal(tf.mod(tf.floor_div(control, field), 2), 1) 
開發者ID:pymit,項目名稱:Rekognition,代碼行數:6,代碼來源:facenet.py

示例5: five_crops

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import floor_div [as 別名]
def five_crops(image, crop_size):
    """ Returns the central and four corner crops of `crop_size` from `image`. """
    image_size = tf.shape(image)[:2]
    crop_margin = tf.subtract(image_size, crop_size)
    assert_size = tf.assert_non_negative(
        crop_margin, message='Crop size must be smaller or equal to the image size.')
    with tf.control_dependencies([assert_size]):
        top_left = tf.floor_div(crop_margin, 2)
        bottom_right = tf.add(top_left, crop_size)
    center       = image[top_left[0]:bottom_right[0], top_left[1]:bottom_right[1]]
    top_left     = image[:-crop_margin[0], :-crop_margin[1]]
    top_right    = image[:-crop_margin[0], crop_margin[1]:]
    bottom_left  = image[crop_margin[0]:, :-crop_margin[1]]
    bottom_right = image[crop_margin[0]:, crop_margin[1]:]
    return center, top_left, top_right, bottom_left, bottom_right 
開發者ID:VisualComputingInstitute,項目名稱:triplet-reid,代碼行數:17,代碼來源:embed.py

示例6: cross_2args

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import floor_div [as 別名]
def cross_2args(X,Y):
    if X.doms == [] and Y.doms == []:
        result = tf.concat([X,Y],axis=-1)
        result.doms = []
        return result,[X,Y]
    X_Y = set(X.doms) - set(Y.doms)
    Y_X = set(Y.doms) - set(X.doms)
    eX = X
    eX_doms = [x for x in X.doms]
    for y in Y_X:
        eX = tf.expand_dims(eX,0)
        eX_doms = [y] + eX_doms
    eY = Y
    eY_doms = [y for y in Y.doms]
    for x in X_Y:
        eY = tf.expand_dims(eY,-2)
        eY_doms.append(x)
    perm_eY = []
    for y in eY_doms:
        perm_eY.append(eX_doms.index(y))
    eY = tf.transpose(eY,perm=perm_eY + [len(perm_eY)])
    mult_eX = [1]*(len(eX_doms)+1)
    mult_eY = [1]*(len(eY_doms)+1)
    for i in range(len(mult_eX)-1):
        mult_eX[i] = tf.maximum(1,tf.floor_div(tf.shape(eY)[i],tf.shape(eX)[i]))
        mult_eY[i] = tf.maximum(1,tf.floor_div(tf.shape(eX)[i],tf.shape(eY)[i]))
    result1 = tf.tile(eX,mult_eX)
    result2 = tf.tile(eY,mult_eY)
    result = tf.concat([result1,result2],axis=-1)
    result1.doms = eX_doms
    result2.doms = eX_doms
    result.doms = eX_doms
    return result,[result1,result2] 
開發者ID:logictensornetworks,項目名稱:logictensornetworks,代碼行數:35,代碼來源:logictensornetworks.py

示例7: _padding

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import floor_div [as 別名]
def _padding(tensor, out_size):
    t_width = tensor.get_shape()[1]
    delta = tf.subtract(out_size, t_width)
    pad_left = tf.floor_div(delta, 2)
    pad_right = delta - pad_left
    return tf.pad(
        tensor,
        [
            [0, 0],
            [pad_left, pad_right],
            [pad_left, pad_right],
            [0, 0]
        ],
        'CONSTANT'
    ) 
開發者ID:reallongnguyen,項目名稱:Optical-Flow-Guided-Feature,代碼行數:17,代碼來源:off.py

示例8: Dense_net

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import floor_div [as 別名]
def Dense_net(input_x,widths,mode):

    training = (mode == learn.ModeKeys.TRAIN)
    # input_x:[ 32 ,width , 3 ]
    x = conv_layer(input_x,filter=filter,kernel=[3,3],stride=1,layer_name='conv0')
    # x = Max_Pooling(x,pool_size=[3,3],stride=2)
    # x: [32,width,64]
    x = dense_block(input_x = x,nb_layers=4,layer_name='dense_1',training=training)
    # x: [32,width,64+4*32=192]
    x = transition_layer(x,128,scope='trans_1',training=training)#transition_layer(x,filters,scope,training)
    # x: [16,width-1,128]
    x = dense_block(input_x = x,nb_layers=6,layer_name='dense_2',training=training)
    # x: [16,width,128+6*32=320]
    x = transition_layer(x,256,scope='trans_2',training=training)
    # x: [8,width-1,256]
    x = Max_Pooling(x,[2,2],2)
    # x:[4,width/2,256]
    x = dense_block(input_x =x ,nb_layers=8,layer_name='dense_3',training=training)
    # x: [4,width,256+8*32=512]
    x = transition_layer(x,512,scope='trans_3',training=training)
    # x: [4,width-1,512]

    x = Batch_Normalization(x,training=training,scope='linear_batch')
    x = Relu(x)
    # x = Global_Average_Pooling(x)  # cifar-10中用於分類
    x = Max_Pooling(x,[2,2],[2,1])
    # x: [1,width/2,512]

    features = tf.squeeze(x,axis=1,name='features')
    # calculate resulting sequence length
    one = tf.constant(1, dtype=tf.int32, name='one')
    two = tf.constant(2, dtype=tf.int32, name='two')

    after_conv0=widths
    after_dense_1=after_conv0
    after_trans_1=tf.subtract(after_dense_1,one)
    after_dense_2=after_trans_1
    after_trans_2=tf.subtract(after_dense_2,one)
    after_first_maxpool=tf.floor_div(after_trans_2, two )#向下取整
    after_dense_3=after_first_maxpool
    after_trans_3=tf.subtract(after_dense_3,one)
    after_second_maxpool=tf.subtract(after_trans_3,one)
    sequence_length = tf.reshape(after_second_maxpool,[-1], name='seq_len')

    return features,sequence_length 
開發者ID:zfxxfeng,項目名稱:cnn_lstm_ctc_ocr_for_ICPR,代碼行數:47,代碼來源:denseNet.py

示例9: convnet_layers

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import floor_div [as 別名]
def convnet_layers(inputs, widths, mode):# image, width, mode
    """Build convolutional network layers attached to the given input tensor"""

    training = (mode == learn.ModeKeys.TRAIN)

    # inputs should have shape [ ?, 32, ?, 1 ]
    with tf.variable_scope("convnet"): # h,w
        inputs=gaussian_noise_layer(inputs,1)
        inputs=tf.image.random_brightness(inputs,32./255)
        inputs=tf.image.random_contrast(inputs,lower=0.5,upper=1.5)
        # inputs=tf.image.random_hue(inputs,max_delta=0.2)

        conv1 = conv_layer(inputs, layer_params[0], training ) # 30,30
        conv2 = conv_layer( conv1, layer_params[1], training ) # 30,30
        pool2 = pool_layer( conv2, 2, 'valid', 'pool2')        # 15,15
        conv3 = conv_layer( pool2, layer_params[2], training ) # 15,15
        conv4 = conv_layer( conv3, layer_params[3], training ) # 15,15
        pool4 = pool_layer( conv4, 1, 'valid', 'pool4' )       # 7,14
        conv5 = conv_layer( pool4, layer_params[4], training ) # 7,14
        conv6 = conv_layer( conv5, layer_params[5], training ) # 7,14
        pool6 = pool_layer( conv6, 1, 'valid', 'pool6')        # 3,13
        conv7 = conv_layer( pool6, layer_params[6], training ) # 3,13
        conv8 = conv_layer( conv7, layer_params[7], training ) # 3,13
        pool8 = tf.layers.max_pooling2d( conv8, [3,1], [3,1], 
                                   padding='valid', name='pool8') # 1,13
        features = tf.squeeze(pool8, axis=1, name='features') # squeeze row dim

        kernel_sizes = [ params[1] for params in layer_params]

        # Calculate resulting sequence length from original image widths
        conv1_trim = tf.constant( 2 * (kernel_sizes[0] // 2),
                                  dtype=tf.int32,
                                  name='conv1_trim')
        one = tf.constant(1, dtype=tf.int32, name='one')
        two = tf.constant(2, dtype=tf.int32, name='two')
        after_conv1 = tf.subtract( widths, conv1_trim)
        after_pool2 = tf.floor_div( after_conv1, two )
        after_pool4 = tf.subtract(after_pool2, one)
        after_pool6 = tf.subtract(after_pool4, one) 
        after_pool8 = after_pool6

        sequence_length = tf.reshape(after_pool8,[-1], name='seq_len') # Vectorize

        return features,sequence_length 
開發者ID:zfxxfeng,項目名稱:cnn_lstm_ctc_ocr_for_ICPR,代碼行數:46,代碼來源:model.py


注:本文中的tensorflow.floor_div方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。