當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.floor方法代碼示例

本文整理匯總了Python中tensorflow.floor方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.floor方法的具體用法?Python tensorflow.floor怎麽用?Python tensorflow.floor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.floor方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _quantize

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import floor [as 別名]
def _quantize(x, params, randomize=True):
  """Quantize x according to params, optionally randomizing the rounding."""
  if not params.quantize:
    return x

  if not randomize:
    return tf.bitcast(
        tf.cast(x / params.quantization_scale, tf.int16), tf.float16)

  abs_x = tf.abs(x)
  sign_x = tf.sign(x)
  y = abs_x / params.quantization_scale
  y = tf.floor(y + tf.random_uniform(common_layers.shape_list(x)))
  y = tf.minimum(y, tf.int16.max) * sign_x
  q = tf.bitcast(tf.cast(y, tf.int16), tf.float16)
  return q 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:18,代碼來源:diet.py

示例2: drop_path

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import floor [as 別名]
def drop_path(inputs, keep_prob, is_training=True, scope=None):
    """Drops out a whole example hiddenstate with the specified probability.
    """
    with tf.name_scope(scope, 'drop_path', [inputs]):
        net = inputs
        if is_training:
            batch_size = tf.shape(net)[0]
            noise_shape = [batch_size, 1, 1, 1]
            random_tensor = keep_prob
            random_tensor += tf.random_uniform(noise_shape, dtype=tf.float32)
            binary_tensor = tf.floor(random_tensor)
            net = tf.div(net, keep_prob) * binary_tensor
        return net

# =========================================================================== #
# Useful methods
# =========================================================================== # 
開發者ID:huawei-noah,項目名稱:ghostnet,代碼行數:19,代碼來源:utils.py

示例3: dropout

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import floor [as 別名]
def dropout(x, pdrop, *, do_dropout, stateless=True, seed=None, name):
    """Like tf.nn.dropout but stateless.
    """
    if stateless:
        assert seed is not None
    def _dropout():
        with tf.name_scope(name):
            noise_shape = tf.shape(x)

            if stateless:
                r = tf.random.stateless_uniform(noise_shape, seed, dtype=x.dtype)
                # floor uniform [keep_prob, 1.0 + keep_prob)
                mask = tf.floor(1 - pdrop + r)
                return x * (mask * (1 / (1 - pdrop)))
            else:
                return tf.nn.dropout(x, rate=pdrop, noise_shape=noise_shape)
    if pdrop == 0 or not do_dropout:
        return x
    else:
        return _dropout() 
開發者ID:openai,項目名稱:lm-human-preferences,代碼行數:22,代碼來源:model.py

示例4: bi_linear_sample

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import floor [as 別名]
def bi_linear_sample(self, img_feat, n, x, y):
        x1 = tf.floor(x)
        x2 = tf.ceil(x)
        y1 = tf.floor(y)
        y2 = tf.ceil(y)
        Q11 = tf.gather_nd(img_feat, tf.stack([n, tf.cast(x1, tf.int32), tf.cast(y1, tf.int32)], 1))
        Q12 = tf.gather_nd(img_feat, tf.stack([n, tf.cast(x1, tf.int32), tf.cast(y2, tf.int32)], 1))
        Q21 = tf.gather_nd(img_feat, tf.stack([n, tf.cast(x2, tf.int32), tf.cast(y1, tf.int32)], 1))
        Q22 = tf.gather_nd(img_feat, tf.stack([n, tf.cast(x2, tf.int32), tf.cast(y2, tf.int32)], 1))

        weights = tf.multiply(tf.subtract(x2, x), tf.subtract(y2, y))
        Q11 = tf.multiply(tf.expand_dims(weights, 1), Q11)
        weights = tf.multiply(tf.subtract(x, x1), tf.subtract(y2, y))
        Q21 = tf.multiply(tf.expand_dims(weights, 1), Q21)
        weights = tf.multiply(tf.subtract(x2, x), tf.subtract(y, y1))
        Q12 = tf.multiply(tf.expand_dims(weights, 1), Q12)
        weights = tf.multiply(tf.subtract(x, x1), tf.subtract(y, y1))
        Q22 = tf.multiply(tf.expand_dims(weights, 1), Q22)
        outputs = tf.add_n([Q11, Q21, Q12, Q22])
        return outputs 
開發者ID:walsvid,項目名稱:Pixel2MeshPlusPlus,代碼行數:22,代碼來源:layers.py

示例5: gaussian_diag

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import floor [as 別名]
def gaussian_diag(mean, logsd):
    class o(object):
        pass
    o.mean = mean
    o.logsd = logsd
    o.eps = tf.random_normal(tf.shape(mean))
    o.sample = mean + tf.exp(logsd) * o.eps
    o.sample2 = lambda eps: mean + tf.exp(logsd) * eps
    o.logps = lambda x: -0.5 * \
        (np.log(2 * np.pi) + 2. * logsd + (x - mean) ** 2 / tf.exp(2. * logsd))
    o.logp = lambda x: flatten_sum(o.logps(x))
    o.get_eps = lambda x: (x - mean) / tf.exp(logsd)
    return o


# def discretized_logistic_old(mean, logscale, binsize=1 / 256.0, sample=None):
#    scale = tf.exp(logscale)
#    sample = (tf.floor(sample / binsize) * binsize - mean) / scale
#    logp = tf.log(tf.sigmoid(sample + binsize / scale) - tf.sigmoid(sample) + 1e-7)
#    return tf.reduce_sum(logp, [1, 2, 3]) 
開發者ID:openai,項目名稱:glow,代碼行數:22,代碼來源:tfops.py

示例6: drop_connect

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import floor [as 別名]
def drop_connect(inputs, is_training, drop_connect_rate):
    """Apply drop connect."""
    if not is_training:
        return inputs

    # Compute keep_prob
    # TODO(tanmingxing): add support for training progress.
    keep_prob = 1.0 - drop_connect_rate

    # Compute drop_connect tensor
    batch_size = tf.shape(inputs)[0]
    random_tensor = keep_prob
    random_tensor += tf.random_uniform([batch_size, 1, 1, 1], dtype=inputs.dtype)
    binary_tensor = tf.floor(random_tensor)
    output = tf.div(inputs, keep_prob) * binary_tensor
    return output 
開發者ID:Thinklab-SJTU,項目名稱:R3Det_Tensorflow,代碼行數:18,代碼來源:demo.py

示例7: drop_connect

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import floor [as 別名]
def drop_connect(inputs, is_training, survival_prob):
  """Drop the entire conv with given survival probability."""
  # "Deep Networks with Stochastic Depth", https://arxiv.org/pdf/1603.09382.pdf
  if not is_training:
    return inputs

  # Compute tensor.
  batch_size = tf.shape(inputs)[0]
  random_tensor = survival_prob
  random_tensor += tf.random_uniform([batch_size, 1, 1, 1], dtype=inputs.dtype)
  binary_tensor = tf.floor(random_tensor)
  # Unlike conventional way that multiply survival_prob at test time, here we
  # divide survival_prob at training time, such that no addition compute is
  # needed at test time.
  output = tf.div(inputs, survival_prob) * binary_tensor
  return output 
開發者ID:Thinklab-SJTU,項目名稱:R3Det_Tensorflow,代碼行數:18,代碼來源:utils.py

示例8: __call__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import floor [as 別名]
def __call__(self, step):
        with tf.name_scope(self.name or "CyclicalLearningRate"):
            initial_learning_rate = tf.convert_to_tensor(
                self.initial_learning_rate, name="initial_learning_rate"
            )
            dtype = initial_learning_rate.dtype
            maximal_learning_rate = tf.cast(self.maximal_learning_rate, dtype)
            step_size = tf.cast(self.step_size, dtype)
            cycle = tf.floor(1 + step / (2 * step_size))
            x = tf.abs(step / step_size - 2 * cycle + 1)

            mode_step = cycle if self.scale_mode == "cycle" else step

            return initial_learning_rate + (
                maximal_learning_rate - initial_learning_rate
            ) * tf.maximum(tf.cast(0, dtype), (1 - x)) * self.scale_fn(mode_step) 
開發者ID:tensorflow,項目名稱:addons,代碼行數:18,代碼來源:cyclical_learning_rate.py

示例9: preprocess

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import floor [as 別名]
def preprocess(self, x):
    """Normalize x.

    Args:
      x: 4-D Tensor.

    Returns:
      x: Scaled such that x lies in-between -0.5 and 0.5
    """
    n_bits_x = self.hparams.n_bits_x
    n_bins = 2**n_bits_x
    x = tf.cast(x, dtype=tf.float32)
    if n_bits_x < 8:
      x = tf.floor(x / 2 ** (8 - n_bits_x))
    x = x / n_bins - 0.5
    return x 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:18,代碼來源:glow.py

示例10: _compute_one_image_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import floor [as 別名]
def _compute_one_image_loss(self, keypoints, offset, size, ground_truth, meshgrid_y, meshgrid_x,
                                stride, pshape):
        slice_index = tf.argmin(ground_truth, axis=0)[0]
        ground_truth = tf.gather(ground_truth, tf.range(0, slice_index, dtype=tf.int64))
        ngbbox_y = ground_truth[..., 0] / stride
        ngbbox_x = ground_truth[..., 1] / stride
        ngbbox_h = ground_truth[..., 2] / stride
        ngbbox_w = ground_truth[..., 3] / stride
        class_id = tf.cast(ground_truth[..., 4], dtype=tf.int32)
        ngbbox_yx = ground_truth[..., 0:2] / stride
        ngbbox_yx_round = tf.floor(ngbbox_yx)
        offset_gt = ngbbox_yx - ngbbox_yx_round
        size_gt = ground_truth[..., 2:4] / stride
        ngbbox_yx_round_int = tf.cast(ngbbox_yx_round, tf.int64)
        keypoints_loss = self._keypoints_loss(keypoints, ngbbox_yx_round_int, ngbbox_y, ngbbox_x, ngbbox_h,
                                              ngbbox_w, class_id, meshgrid_y, meshgrid_x, pshape)

        offset = tf.gather_nd(offset, ngbbox_yx_round_int)
        size = tf.gather_nd(size, ngbbox_yx_round_int)
        offset_loss = tf.reduce_mean(tf.abs(offset_gt - offset))
        size_loss = tf.reduce_mean(tf.abs(size_gt - size))
        total_loss = keypoints_loss + 0.1*size_loss + offset_loss
        return total_loss 
開發者ID:Stick-To,項目名稱:CenterNet-tensorflow,代碼行數:25,代碼來源:CenterNet.py

示例11: __call__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import floor [as 別名]
def __call__(self, inputs, state, scope=None):
    output, new_state = self._cell(inputs, state, scope)
    if not isinstance(self._cell.state_size, tuple):
      new_state = tf.split(value=new_state, num_or_size_splits=2, axis=1)
      state = tf.split(value=state, num_or_size_splits=2, axis=1)
    final_new_state = [new_state[0], new_state[1]]
    if self._is_training:
      for i, state_element in enumerate(state):
        random_tensor = 1 - self._zoneout_prob  # keep probability
        random_tensor += tf.random_uniform(tf.shape(state_element))
        # 0. if [zoneout_prob, 1.0) and 1. if [1.0, 1.0 + zoneout_prob)
        binary_tensor = tf.floor(random_tensor)
        final_new_state[
            i] = (new_state[i] - state_element) * binary_tensor + state_element
    else:
      for i, state_element in enumerate(state):
        final_new_state[
            i] = state_element * self._zoneout_prob + new_state[i] * (
                1 - self._zoneout_prob)
    if isinstance(self._cell.state_size, tuple):
      return output, tf.contrib.rnn.LSTMStateTuple(
          final_new_state[0], final_new_state[1])

    return output, tf.concat([final_new_state[0], final_new_state[1]], 1) 
開發者ID:itsamitgoel,項目名稱:Gun-Detector,代碼行數:26,代碼來源:zoneout.py

示例12: fixed_dropout

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import floor [as 別名]
def fixed_dropout(xs, keep_prob, noise_shape, seed=None):
    """
    Apply dropout with same mask over all inputs
    Args:
        xs: list of tensors
        keep_prob:
        noise_shape:
        seed:

    Returns:
        list of dropped inputs
    """
    with tf.name_scope("dropout", values=xs):
        noise_shape = noise_shape
        # uniform [keep_prob, 1.0 + keep_prob)
        random_tensor = keep_prob
        random_tensor += tf.random_uniform(noise_shape, seed=seed, dtype=xs[0].dtype)
        # 0. if [keep_prob, 1.0) and 1. if [1.0, 1.0 + keep_prob)
        binary_tensor = tf.floor(random_tensor)
        outputs = []
        for x in xs:
            ret = tf.div(x, keep_prob) * binary_tensor
            ret.set_shape(x.get_shape())
            outputs.append(ret)
        return outputs 
開發者ID:uclnlp,項目名稱:jack,代碼行數:27,代碼來源:dropout.py

示例13: _apply_func_with_prob

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import floor [as 別名]
def _apply_func_with_prob(func, image, args, prob, bboxes):
  """Apply `func` to image w/ `args` as input with probability `prob`."""
  assert isinstance(args, tuple)
  assert 'bboxes' == inspect.getargspec(func)[0][1]

  # If prob is a function argument, then this randomness is being handled
  # inside the function, so make sure it is always called.
  if 'prob' in inspect.getargspec(func)[0]:
    prob = 1.0

  # Apply the function with probability `prob`.
  should_apply_op = tf.cast(
      tf.floor(tf.random_uniform([], dtype=tf.float32) + prob), tf.bool)
  augmented_image, augmented_bboxes = tf.cond(
      should_apply_op,
      lambda: func(image, bboxes, *args),
      lambda: (image, bboxes))
  return augmented_image, augmented_bboxes 
開發者ID:artyompal,項目名稱:tpu_models,代碼行數:20,代碼來源:autoaugment_utils.py

示例14: drop_connect

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import floor [as 別名]
def drop_connect(inputs, is_training, drop_connect_rate):
  """Apply drop connect."""
  if not is_training:
    return inputs

  # Compute keep_prob
  # TODO(tanmingxing): add support for training progress.
  keep_prob = 1.0 - drop_connect_rate

  # Compute drop_connect tensor
  batch_size = tf.shape(inputs)[0]
  random_tensor = keep_prob
  random_tensor += tf.random_uniform([batch_size, 1, 1, 1], dtype=inputs.dtype)
  binary_tensor = tf.floor(random_tensor)
  output = tf.div(inputs, keep_prob) * binary_tensor
  return output 
開發者ID:artyompal,項目名稱:tpu_models,代碼行數:18,代碼來源:utils.py

示例15: call

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import floor [as 別名]
def call(self, inputs, training=None):

        def drop_connect():
            keep_prob = 1.0 - self.drop_connect_rate

            # Compute drop_connect tensor
            batch_size = tf.shape(inputs)[0]
            random_tensor = keep_prob
            random_tensor += tf.random_uniform([batch_size, 1, 1, 1], dtype=inputs.dtype)
            binary_tensor = tf.floor(random_tensor)
            output = (inputs / keep_prob) * binary_tensor
            return output

        return K.in_train_phase(drop_connect, inputs, training=training) 
開發者ID:titu1994,項目名稱:keras_mixnets,代碼行數:16,代碼來源:custom_objects.py


注:本文中的tensorflow.floor方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。