本文整理匯總了Python中tensorflow.float64方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.float64方法的具體用法?Python tensorflow.float64怎麽用?Python tensorflow.float64使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.float64方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import float64 [as 別名]
def __init__(self):
global FLAGS
self.FLAGS = FLAGS
self.unk_token = "UNK"
self.entry_match_token = "entry_match"
self.column_match_token = "column_match"
self.dummy_token = "dummy_token"
self.tf_data_type = {}
self.tf_data_type["double"] = tf.float64
self.tf_data_type["float"] = tf.float32
self.np_data_type = {}
self.np_data_type["double"] = np.float64
self.np_data_type["float"] = np.float32
self.operations_set = ["count"] + [
"prev", "next", "first_rs", "last_rs", "group_by_max", "greater",
"lesser", "geq", "leq", "max", "min", "word-match"
] + ["reset_select"] + ["print"]
self.word_ids = {}
self.reverse_word_ids = {}
self.word_count = {}
self.random = Random(FLAGS.python_seed)
示例2: get_privacy_spent
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import float64 [as 別名]
def get_privacy_spent(self, sess, target_eps=None):
"""Report the spending so far.
Args:
sess: the session to run the tensor.
target_eps: the target epsilon. Unused.
Returns:
the list containing a single EpsDelta, with values as Python floats (as
opposed to numpy.float64). This is to be consistent with
MomentAccountant which can return a list of (eps, delta) pair.
"""
# pylint: disable=unused-argument
unused_target_eps = target_eps
eps_squared_sum, delta_sum = sess.run([self._eps_squared_sum,
self._delta_sum])
return [EpsDelta(math.sqrt(eps_squared_sum), float(delta_sum))]
示例3: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import float64 [as 別名]
def __init__(self, total_examples, moment_orders=32):
"""Initialize a MomentsAccountant.
Args:
total_examples: total number of examples.
moment_orders: the order of moments to keep.
"""
assert total_examples > 0
self._total_examples = total_examples
self._moment_orders = (moment_orders
if isinstance(moment_orders, (list, tuple))
else range(1, moment_orders + 1))
self._max_moment_order = max(self._moment_orders)
assert self._max_moment_order < 100, "The moment order is too large."
self._log_moments = [tf.Variable(numpy.float64(0.0),
trainable=False,
name=("log_moments-%d" % moment_order))
for moment_order in self._moment_orders]
示例4: simulate
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import float64 [as 別名]
def simulate(self, action):
"""Step the batch of environments.
The results of the step can be accessed from the variables defined below.
Args:
action: Tensor holding the batch of actions to apply.
Returns:
Operation.
"""
with tf.name_scope('environment/simulate'):
if action.dtype in (tf.float16, tf.float32, tf.float64):
action = tf.check_numerics(action, 'action')
observ_dtype = self._parse_dtype(self._batch_env.observation_space)
observ, reward, done = tf.py_func(
lambda a: self._batch_env.step(a)[:3], [action],
[observ_dtype, tf.float32, tf.bool], name='step')
observ = tf.check_numerics(observ, 'observ')
reward = tf.check_numerics(reward, 'reward')
return tf.group(
self._observ.assign(observ),
self._action.assign(action),
self._reward.assign(reward),
self._done.assign(done))
示例5: simulate
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import float64 [as 別名]
def simulate(self, action):
"""Step the batch of environments.
The results of the step can be accessed from the variables defined below.
Args:
action: Tensor holding the batch of actions to apply.
Returns:
Operation.
"""
with tf.name_scope('environment/simulate'):
if action.dtype in (tf.float16, tf.float32, tf.float64):
action = tf.check_numerics(action, 'action')
observ_dtype = utils.parse_dtype(self._batch_env.observation_space)
observ, reward, done = tf.py_func(
lambda a: self._batch_env.step(a)[:3], [action],
[observ_dtype, tf.float32, tf.bool], name='step')
observ = tf.check_numerics(observ, 'observ')
reward = tf.check_numerics(reward, 'reward')
reward.set_shape((len(self),))
done.set_shape((len(self),))
with tf.control_dependencies([self._observ.assign(observ)]):
return tf.identity(reward), tf.identity(done)
示例6: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import float64 [as 別名]
def __init__(self, epsilon=1e-4, shape=(), scope=''):
sess = get_session()
self._new_mean = tf.placeholder(shape=shape, dtype=tf.float64)
self._new_var = tf.placeholder(shape=shape, dtype=tf.float64)
self._new_count = tf.placeholder(shape=(), dtype=tf.float64)
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
self._mean = tf.get_variable('mean', initializer=np.zeros(shape, 'float64'), dtype=tf.float64)
self._var = tf.get_variable('std', initializer=np.ones(shape, 'float64'), dtype=tf.float64)
self._count = tf.get_variable('count', initializer=np.full((), epsilon, 'float64'), dtype=tf.float64)
self.update_ops = tf.group([
self._var.assign(self._new_var),
self._mean.assign(self._new_mean),
self._count.assign(self._new_count)
])
sess.run(tf.variables_initializer([self._mean, self._var, self._count]))
self.sess = sess
self._set_mean_var_count()
示例7: _build_relation_feature
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import float64 [as 別名]
def _build_relation_feature(self):
if self.feature_type == 'id':
self.relation_dim = self.n_relations
self.relation_features = tf.eye(self.n_relations, dtype=tf.float64)
elif self.feature_type == 'bow':
bow = np.load('../data/' + self.dataset + '/bow.npy')
self.relation_dim = bow.shape[1]
self.relation_features = tf.constant(bow, tf.float64)
elif self.feature_type == 'bert':
bert = np.load('../data/' + self.dataset + '/bert.npy')
self.relation_dim = bert.shape[1]
self.relation_features = tf.constant(bert, tf.float64)
# the feature of the last relation (the null relation) is a zero vector
self.relation_features = tf.concat([self.relation_features, tf.zeros([1, self.relation_dim], tf.float64)],
axis=0, name='relation_features')
示例8: _get_neighbors_and_masks
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import float64 [as 別名]
def _get_neighbors_and_masks(self, relations, entity_pairs, train_edges):
edges_list = [relations]
masks = []
train_edges = tf.expand_dims(train_edges, -1) # [batch_size, 1]
for i in range(self.context_hops):
if i == 0:
neighbor_entities = entity_pairs
else:
neighbor_entities = tf.reshape(tf.gather(self.edge2entities, edges_list[-1]), [self.batch_size, -1])
neighbor_edges = tf.reshape(tf.gather(self.entity2edges, neighbor_entities), [self.batch_size, -1])
edges_list.append(neighbor_edges)
mask = neighbor_edges - train_edges # [batch_size, -1]
mask = tf.cast(tf.cast(mask, tf.bool), tf.float64) # [batch_size, -1]
masks.append(mask)
return edges_list, masks
示例9: _rnn
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import float64 [as 別名]
def _rnn(self, path_ids):
path_ids = tf.reshape(path_ids, [self.batch_size * self.path_samples]) # [batch_size * path_samples]
paths = tf.nn.embedding_lookup(self.id2path, path_ids) # [batch_size * path_samples, max_path_len]
# [batch_size * path_samples, max_path_len, relation_dim]
path_features = tf.nn.embedding_lookup(self.relation_features, paths)
lengths = tf.nn.embedding_lookup(self.id2length, path_ids) # [batch_size * path_samples]
cell = tf.nn.rnn_cell.LSTMCell(num_units=self.hidden_dim, name='basic_lstm_cell')
initial_state = cell.zero_state(self.batch_size * self.path_samples, tf.float64)
# [batch_size * path_samples, hidden_dim]
_, last_state = tf.nn.dynamic_rnn(cell, path_features, sequence_length=lengths, initial_state=initial_state)
self.W, self.b = self._get_weight_and_bias(self.hidden_dim, self.n_relations)
output = tf.matmul(last_state.h, self.W) + self.b # [batch_size * path_samples, n_relations]
output = tf.reshape(output, [self.batch_size, self.path_samples, self.n_relations])
return output
示例10: initialize
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import float64 [as 別名]
def initialize(self, dtype=tf.float64):
if self.tf_variance_scalar is None:
if self.scalar is not None:
self.tf_variance_scalar = tf.Variable(self.scalar, dtype=dtype)
else:
self.tf_variance_scalar = tf.Variable(1.0, dtype=dtype)
if self.has_prior is None:
if self.prior is not None:
self.has_prior = True
self.tf_alpha = tf.constant(self.prior["alpha"], dtype=dtype)
self.tf_beta = tf.constant(self.prior["beta"], dtype=dtype)
else:
self.has_prior = False
self.tf_dims = tf.constant(self.dims, dtype=dtype)
示例11: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import float64 [as 別名]
def __init__(self, data, components, cluster=None, dtype=tf.float64):
if isinstance(data, np.ndarray):
data = [data]
self.data = data
self.dims = sum(d.shape[1] for d in data)
self.num_points = data[0].shape[0]
self.components = components
self.tf_graph = tf.Graph()
self._initialize_workers(cluster)
self._initialize_component_mapping()
self._initialize_data_sources()
self._initialize_variables(dtype)
self._initialize_graph(dtype)
示例12: initialize
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import float64 [as 別名]
def initialize(self, dtype=tf.float64):
if self.tf_mean is None:
if self.mean is not None:
self.tf_mean = tf.Variable(self.mean, dtype=dtype)
else:
self.tf_mean = tf.Variable(tf.cast(tf.fill([self.dims], 0.0), dtype))
if self.tf_covariance is None:
if self.covariance is not None:
self.tf_covariance = self.covariance
else:
self.tf_covariance = FullCovariance(self.dims)
self.tf_covariance.initialize(dtype)
if self.tf_ln2piD is None:
self.tf_ln2piD = tf.constant(np.log(2 * np.pi) * self.dims, dtype=dtype)
示例13: llhIndividual
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import float64 [as 別名]
def llhIndividual(self, X: Tensor) -> Tensor:
"""Log likelihood of the parameters given data `X`."""
# log likelihood of the noise
llhRes = self.likelihood.llh(self.U, X)
llh = llhRes
# log likelihood of the factors
llhU = []
llhUfk = []
U = list(self.U)
for f, postUf in enumerate(self.postU):
U = self.rescale(U=U, fNonUnit=f)
UfT = tf.transpose(U[f])
llhUfk.append(tf.reduce_sum(postUf.prior.llh(UfT), axis=0))
llhUf = tf.reduce_sum(postUf.prior.llh(UfT))
llh = llh + llhUf
llhU.append(llhUf)
llh = tf.cast(llh, tf.float64)
return(llh, llhRes, llhU, llhUfk)
示例14: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import float64 [as 別名]
def __init__(self, epsilon=1e-4, shape=(), scope=''):
sess = get_session()
self._new_mean = tf.placeholder(shape=shape, dtype=tf.float64)
self._new_var = tf.placeholder(shape=shape, dtype=tf.float64)
self._new_count = tf.placeholder(shape=(), dtype=tf.float64)
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
self._mean = tf.get_variable('mean', initializer=np.zeros(shape, 'float64'), dtype=tf.float64)
self._var = tf.get_variable('std', initializer=np.ones(shape, 'float64'), dtype=tf.float64)
self._count = tf.get_variable('count', initializer=np.full((), epsilon, 'float64'), dtype=tf.float64)
self.update_ops = tf.group([
self._var.assign(self._new_var),
self._mean.assign(self._new_mean),
self._count.assign(self._new_count)
])
sess.run(tf.variables_initializer([self._mean, self._var, self._count]))
self.sess = sess
self._set_mean_var_count()
開發者ID:quantumiracle,項目名稱:Reinforcement_Learning_for_Traffic_Light_Control,代碼行數:24,代碼來源:running_mean_std.py
示例15: train
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import float64 [as 別名]
def train(self):
print("Total number of parameters: %d" % (self.hyp.shape[0]))
X_tf = tf.placeholder(tf.float64)
y_tf = tf.placeholder(tf.float64)
hyp_tf = tf.Variable(self.hyp, dtype=tf.float64)
train = self.likelihood(hyp_tf, X_tf, y_tf)
init = tf.global_variables_initializer()
self.sess.run(init)
start_time = timeit.default_timer()
for i in range(1,self.max_iter+1):
# Fetch minibatch
X_batch, y_batch = fetch_minibatch(self.X,self.y,self.N_batch)
self.sess.run(train, {X_tf:X_batch, y_tf:y_batch})
if i % self.monitor_likelihood == 0:
elapsed = timeit.default_timer() - start_time
nlml = self.sess.run(self.nlml)
print('Iteration: %d, NLML: %.2f, Time: %.2f' % (i, nlml, elapsed))
start_time = timeit.default_timer()
self.hyp = self.sess.run(hyp_tf)