當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.float16方法代碼示例

本文整理匯總了Python中tensorflow.float16方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.float16方法的具體用法?Python tensorflow.float16怎麽用?Python tensorflow.float16使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.float16方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: create_model

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import float16 [as 別名]
def create_model(session, forward_only):
  """Create translation model and initialize or load parameters in session."""
  dtype = tf.float16 if FLAGS.use_fp16 else tf.float32
  model = seq2seq_model.Seq2SeqModel(
      FLAGS.from_vocab_size,
      FLAGS.to_vocab_size,
      _buckets,
      FLAGS.size,
      FLAGS.num_layers,
      FLAGS.max_gradient_norm,
      FLAGS.batch_size,
      FLAGS.learning_rate,
      FLAGS.learning_rate_decay_factor,
      forward_only=forward_only,
      dtype=dtype)
  ckpt = tf.train.get_checkpoint_state(FLAGS.train_dir)
  if ckpt and tf.train.checkpoint_exists(ckpt.model_checkpoint_path):
    print("Reading model parameters from %s" % ckpt.model_checkpoint_path)
    model.saver.restore(session, ckpt.model_checkpoint_path)
  else:
    print("Created model with fresh parameters.")
    session.run(tf.global_variables_initializer())
  return model 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:25,代碼來源:translate.py

示例2: _variable_with_weight_decay

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import float16 [as 別名]
def _variable_with_weight_decay(name, shape, stddev, wd):
  """Helper to create an initialized Variable with weight decay.

  Note that the Variable is initialized with a truncated normal distribution.
  A weight decay is added only if one is specified.

  Args:
    name: name of the variable
    shape: list of ints
    stddev: standard deviation of a truncated Gaussian
    wd: add L2Loss weight decay multiplied by this float. If None, weight
        decay is not added for this Variable.

  Returns:
    Variable Tensor
  """
  dtype = tf.float16 if FLAGS.use_fp16 else tf.float32
  var = _variable_on_cpu(
      name,
      shape,
      tf.truncated_normal_initializer(stddev=stddev, dtype=dtype))
  if wd is not None:
    weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss')
    tf.add_to_collection('losses', weight_decay)
  return var 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:27,代碼來源:cifar10.py

示例3: inputs

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import float16 [as 別名]
def inputs(eval_data):
  """Construct input for CIFAR evaluation using the Reader ops.

  Args:
    eval_data: bool, indicating if one should use the train or eval data set.

  Returns:
    images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
    labels: Labels. 1D tensor of [batch_size] size.

  Raises:
    ValueError: If no data_dir
  """
  if not FLAGS.data_dir:
    raise ValueError('Please supply a data_dir')
  data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin')
  images, labels = cifar10_input.inputs(eval_data=eval_data,
                                        data_dir=data_dir,
                                        batch_size=FLAGS.batch_size)
  if FLAGS.use_fp16:
    images = tf.cast(images, tf.float16)
    labels = tf.cast(labels, tf.float16)
  return images, labels 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:25,代碼來源:cifar10.py

示例4: simulate

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import float16 [as 別名]
def simulate(self, action):
    """Step the batch of environments.

    The results of the step can be accessed from the variables defined below.

    Args:
      action: Tensor holding the batch of actions to apply.

    Returns:
      Operation.
    """
    with tf.name_scope('environment/simulate'):
      if action.dtype in (tf.float16, tf.float32, tf.float64):
        action = tf.check_numerics(action, 'action')
      observ_dtype = self._parse_dtype(self._batch_env.observation_space)
      observ, reward, done = tf.py_func(
          lambda a: self._batch_env.step(a)[:3], [action],
          [observ_dtype, tf.float32, tf.bool], name='step')
      observ = tf.check_numerics(observ, 'observ')
      reward = tf.check_numerics(reward, 'reward')
      return tf.group(
          self._observ.assign(observ),
          self._action.assign(action),
          self._reward.assign(reward),
          self._done.assign(done)) 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:27,代碼來源:in_graph_batch_env.py

示例5: simulate

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import float16 [as 別名]
def simulate(self, action):
    """Step the batch of environments.

    The results of the step can be accessed from the variables defined below.

    Args:
      action: Tensor holding the batch of actions to apply.

    Returns:
      Operation.
    """
    with tf.name_scope('environment/simulate'):
      if action.dtype in (tf.float16, tf.float32, tf.float64):
        action = tf.check_numerics(action, 'action')
      observ_dtype = utils.parse_dtype(self._batch_env.observation_space)
      observ, reward, done = tf.py_func(
          lambda a: self._batch_env.step(a)[:3], [action],
          [observ_dtype, tf.float32, tf.bool], name='step')
      observ = tf.check_numerics(observ, 'observ')
      reward = tf.check_numerics(reward, 'reward')
      reward.set_shape((len(self),))
      done.set_shape((len(self),))
      with tf.control_dependencies([self._observ.assign(observ)]):
        return tf.identity(reward), tf.identity(done) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:26,代碼來源:py_func_batch_env.py

示例6: _quantize

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import float16 [as 別名]
def _quantize(x, params, randomize=True):
  """Quantize x according to params, optionally randomizing the rounding."""
  if not params.quantize:
    return x

  if not randomize:
    return tf.bitcast(
        tf.cast(x / params.quantization_scale, tf.int16), tf.float16)

  abs_x = tf.abs(x)
  sign_x = tf.sign(x)
  y = abs_x / params.quantization_scale
  y = tf.floor(y + tf.random_uniform(common_layers.shape_list(x)))
  y = tf.minimum(y, tf.int16.max) * sign_x
  q = tf.bitcast(tf.cast(y, tf.int16), tf.float16)
  return q 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:18,代碼來源:diet.py

示例7: _get_logits

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import float16 [as 別名]
def _get_logits(self, image):
        ctx = get_current_tower_context()
        with maybe_freeze_updates(ctx.index > 0):
            network = ConvNetBuilder(
                image, 3, True,
                use_tf_layers=True,
                data_format=self.data_format,
                dtype=tf.float16 if args.use_fp16 else tf.float32,
                variable_dtype=tf.float32)
            with custom_getter_scope(network.get_custom_getter()):
                dataset = lambda: 1
                dataset.name = 'imagenet'
                model_conf = model_config.get_model_config('resnet50', dataset)
                model_conf.set_batch_size(args.batch)
                model_conf.add_inference(network)
                return network.affine(1000, activation='linear', stddev=0.001) 
開發者ID:tensorpack,項目名稱:benchmarks,代碼行數:18,代碼來源:resnet-multigpu.py

示例8: _variable_on_cpu

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import float16 [as 別名]
def _variable_on_cpu(name, shape, initializer):
  """Helper to create a Variable stored on CPU memory.

  Args:
    name: name of the variable
    shape: list of ints
    initializer: initializer for Variable

  Returns:
    Variable Tensor
  """
  key = (tf.get_variable_scope().name, name)
  if key in shared_variables:
    return shared_variables[key]
  # with tf.device('/cpu:0'):
  dtype = tf.float16 if FLAGS.use_fp16 else tf.float32
  var = tf.get_variable(name, shape, initializer=initializer, dtype=dtype)
  shared_variables[key] = var
  return var 
開發者ID:sunblaze-ucb,項目名稱:blackbox-attacks,代碼行數:21,代碼來源:cifar10_reusable.py

示例9: distorted_inputs

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import float16 [as 別名]
def distorted_inputs():
  """Construct distorted input for CIFAR training using the Reader ops.

  Returns:
    images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
    labels: Labels. 1D tensor of [batch_size] size.

  Raises:
    ValueError: If no data_dir
  """
  if not FLAGS.data_dir:
    raise ValueError('Please supply a data_dir')
  data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin')
  images, labels = cifar10_input_nostd.distorted_inputs(data_dir=data_dir,
                                                        batch_size=FLAGS.batch_size)
  if FLAGS.use_fp16:
    images = tf.cast(images, tf.float16)
    labels = tf.cast(labels, tf.float16)
  return images, labels 
開發者ID:sunblaze-ucb,項目名稱:blackbox-attacks,代碼行數:21,代碼來源:cifar10_reusable.py

示例10: inputs

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import float16 [as 別名]
def inputs(eval_data):
  """Construct input for CIFAR evaluation using the Reader ops.

  Args:
    eval_data: bool, indicating if one should use the train or eval data set.

  Returns:
    images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
    labels: Labels. 1D tensor of [batch_size] size.

  Raises:
    ValueError: If no data_dir
  """
  if not FLAGS.data_dir:
    raise ValueError('Please supply a data_dir')
  data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin')
  images, labels = cifar10_input_nostd.inputs(eval_data=eval_data,
                                              data_dir=data_dir,
                                              batch_size=FLAGS.batch_size)
  if FLAGS.use_fp16:
    images = tf.cast(images, tf.float16)
    labels = tf.cast(labels, tf.float16)
  return images, labels 
開發者ID:sunblaze-ucb,項目名稱:blackbox-attacks,代碼行數:25,代碼來源:cifar10_reusable.py

示例11: _apply_dense

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import float16 [as 別名]
def _apply_dense(self, grad, var):
        lr_t = tf.cast(self._lr_t, var.dtype.base_dtype)
        beta1_t = tf.cast(self._beta1_t, var.dtype.base_dtype)
        beta2_t = tf.cast(self._beta2_t, var.dtype.base_dtype)
        if var.dtype.base_dtype == tf.float16:
            # Can't use 1e-8 due to underflow
            eps = 1e-7
        else:
            eps = 1e-8

        v = self.get_slot(var, "v")
        v_t = v.assign(beta1_t * v + (1. - beta1_t) * grad)
        m = self.get_slot(var, "m")
        m_t = m.assign(tf.maximum(beta2_t * m + eps, tf.abs(grad)))
        g_t = v_t / m_t

        var_update = tf.assign_sub(var, lr_t * g_t)
        return tf.group(*[var_update, m_t, v_t]) 
開發者ID:thu-ml,項目名稱:zhusuan,代碼行數:20,代碼來源:optimizers.py

示例12: _apply_dense

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import float16 [as 別名]
def _apply_dense(self, grad, var):
        lr_t = tf.cast(self._lr_t, var.dtype.base_dtype)
        beta1_t = tf.cast(self._beta1_t, var.dtype.base_dtype)
        beta2_t = tf.cast(self._beta2_t, var.dtype.base_dtype)
        if var.dtype.base_dtype == tf.float16:
            eps = 1e-7  # Can't use 1e-8 due to underflow -- not sure if it makes a big difference.
        else:
            eps = 1e-8

        v = self.get_slot(var, "v")
        v_t = v.assign(beta1_t * v + (1. - beta1_t) * grad)
        m = self.get_slot(var, "m")
        m_t = m.assign(tf.maximum(beta2_t * m + eps, tf.abs(grad)))
        g_t = v_t / m_t

        var_update = tf.assign_sub(var, lr_t * g_t)
        return tf.group(*[var_update, m_t, v_t]) 
開發者ID:buriburisuri,項目名稱:sugartensor,代碼行數:19,代碼來源:sg_optimize.py

示例13: _apply_dense

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import float16 [as 別名]
def _apply_dense(self, grad, var):
    lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype)
    beta1_t = math_ops.cast(self._beta1_t, var.dtype.base_dtype)
    beta2_t = math_ops.cast(self._beta2_t, var.dtype.base_dtype)
    if var.dtype.base_dtype == tf.float16:
        eps = 1e-7  # Can't use 1e-8 due to underflow -- not sure if it makes a big difference.
    else:
        eps = 1e-8

    v = self.get_slot(var, "v")
    v_t = v.assign(beta2_t * v + (1. - beta2_t) * tf.square(grad))
    m = self.get_slot(var, "m")
    m_t = m.assign( beta1_t * m + (1. - beta1_t) * grad )
    v_t_hat = tf.div(v_t, 1. - beta2_t)
    m_t_hat = tf.div(m_t, 1. - beta1_t)
    
    g_t = tf.div( m_t, tf.sqrt(v_t)+eps )
    g_t_1 = self.get_slot(var, "g")
    g_t = g_t_1.assign( g_t )

    var_update = state_ops.assign_sub(var, 2. * lr_t * g_t - lr_t * g_t_1) #Adam would be lr_t * g_t
    return control_flow_ops.group(*[var_update, m_t, v_t, g_t]) 
開發者ID:HyperGAN,項目名稱:HyperGAN,代碼行數:24,代碼來源:adamirror.py

示例14: _apply_dense

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import float16 [as 別名]
def _apply_dense(self, grad, var):
        lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype)
        beta1_t = math_ops.cast(self._beta1_t, var.dtype.base_dtype)
        beta2_t = math_ops.cast(self._beta2_t, var.dtype.base_dtype)
        if var.dtype.base_dtype == tf.float16:
            eps = 1e-7  # Can't use 1e-8 due to underflow -- not sure if it makes a big difference.
        else:
            eps = 1e-8

        v = self.get_slot(var, "v")
        v_t = v.assign(beta1_t * v + (1. - beta1_t) * grad)
        m = self.get_slot(var, "m")
        m_t = m.assign(tf.maximum(beta2_t * m + eps, tf.abs(grad)))
        g_t = v_t / m_t

        var_update = state_ops.assign_sub(var, lr_t * g_t)
        return control_flow_ops.group(*[var_update, m_t, v_t]) 
開發者ID:daniellerch,項目名稱:aletheia,代碼行數:19,代碼來源:models.py

示例15: get_dataset_iterator

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import float16 [as 別名]
def get_dataset_iterator(dataset_name, train_image_size, preprocessing_fn=None, data_sources=None, reader=None):
  with tf.device("/cpu:0"):
    if not dataset_name:
      raise ValueError('expect dataset_name not None.')
    if dataset_name == 'mock':
      return dataset_utils._create_mock_iterator(train_image_size)
    if dataset_name not in datasets_map:
      raise ValueError('Name of network unknown %s' % dataset_name)

    def parse_fn(example):
      with tf.device("/cpu:0"):
        image, label = datasets_map[dataset_name].parse_fn(example)
        if preprocessing_fn is not None:
          image = preprocessing_fn(image, train_image_size, train_image_size)
        if FLAGS.use_fp16:
          image = tf.cast(image, tf.float16)
        label -= FLAGS.labels_offset
        return image, label
    return dataset_utils._create_dataset_iterator(data_sources, parse_fn, reader) 
開發者ID:alibaba,項目名稱:FastNN,代碼行數:21,代碼來源:dataset_factory.py


注:本文中的tensorflow.float16方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。