當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.fixed_size_partitioner方法代碼示例

本文整理匯總了Python中tensorflow.fixed_size_partitioner方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.fixed_size_partitioner方法的具體用法?Python tensorflow.fixed_size_partitioner怎麽用?Python tensorflow.fixed_size_partitioner使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.fixed_size_partitioner方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_partitioner

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fixed_size_partitioner [as 別名]
def get_partitioner(min_num_partitions):
    """Return tf.fixed_size_partitioner with num_partitions
       that determined by Parallax.
   
    Args:
      min_num_partitions: A minimum (default) number of partitions 
                          without memory exception.
    """

    if PARALLAX_MIN_PARTITIONS not in os.environ:
       os.environ[PARALLAX_MIN_PARTITIONS] = str(min_num_partitions)

    if PARALLAX_PARTITIONS in os.environ:
        partitions = int(os.environ[PARALLAX_PARTITIONS])
    else:
        partitions = min_num_partitions
    return tf.fixed_size_partitioner(partitions) 
開發者ID:snuspl,項目名稱:parallax,代碼行數:19,代碼來源:partitions.py

示例2: build_linear_regressor

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fixed_size_partitioner [as 別名]
def build_linear_regressor(self, weight, weight_shape, bias, bias_shape):
    with tf.Graph().as_default():
      # Use a partitioner that is known a priori because canned Estimators
      # default to using one otherwise. This allows tests to access variables
      # used in the underlying Estimator.
      tf.get_variable(
          name=WEIGHT_VARIABLE,
          shape=weight_shape,
          initializer=weight,
          partitioner=tf.fixed_size_partitioner(1))
      tf.get_variable(
          name=BIAS_VARIABLE,
          shape=bias_shape,
          initializer=bias,
          partitioner=tf.fixed_size_partitioner(1))
      tf.Variable(100, name=tf.GraphKeys.GLOBAL_STEP, dtype=tf.int64)

      with tf.Session() as sess:
        sess.run([tf.global_variables_initializer()])
        tf.train.Saver().save(sess, os.path.join(self.model_dir, 'model.ckpt'))

    fc = tf.feature_column.numeric_column(
        FEATURE_NAME, shape=np.array(weight).shape)
    return tf.estimator.LinearRegressor(
        feature_columns=(fc,), model_dir=self.model_dir, optimizer='SGD') 
開發者ID:tensorflow,項目名稱:neural-structured-learning,代碼行數:27,代碼來源:graph_regularization_test.py

示例3: test_return_all_variables_from_checkpoint_with_partition

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fixed_size_partitioner [as 別名]
def test_return_all_variables_from_checkpoint_with_partition(self):
    with tf.Graph().as_default():
      partitioner = tf.fixed_size_partitioner(2)
      variables = [
          tf.get_variable(
              name='weights', shape=(2, 2), partitioner=partitioner),
          tf.Variable([1.0, 2.0], name='biases')
      ]
      checkpoint_path = os.path.join(self.get_temp_dir(), 'model.ckpt')
      init_op = tf.global_variables_initializer()
      saver = tf.train.Saver(variables)
      with self.test_session() as sess:
        sess.run(init_op)
        saver.save(sess, checkpoint_path)
      out_variables = variables_helper.get_variables_available_in_checkpoint(
          variables, checkpoint_path)
    self.assertItemsEqual(out_variables, variables) 
開發者ID:ShivangShekhar,項目名稱:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代碼行數:19,代碼來源:variables_helper_test.py

示例4: testSimpleOpGetRegularizer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fixed_size_partitioner [as 別名]
def testSimpleOpGetRegularizer(self, use_batch_norm, use_partitioner, scope):
    # Tests the alive patern of the conv and relu ops.
    # use_batch_norm: A Boolean. Inidcats if batch norm should be used.
    # use_partitioner: A Boolean. Inidcats if a fixed_size_partitioner should be
    #   used.
    # scope: A String. with the scope to test.
    sc = self._batch_norm_scope() if use_batch_norm else []
    partitioner = tf.fixed_size_partitioner(2) if use_partitioner else None
    with tf.contrib.framework.arg_scope(sc):
      with tf.variable_scope(tf.get_variable_scope(), partitioner=partitioner):
        final_op = op_regularizer_stub.build_model()

    op_reg_manager = orm.OpRegularizerManager([final_op],
                                              op_regularizer_stub.MOCK_REG_DICT)
    expected_alive = op_regularizer_stub.expected_alive()
    with self.test_session():
      conv_reg = op_reg_manager.get_regularizer(_get_op(scope + '/Conv2D'))
      self.assertAllEqual(expected_alive[scope],
                          conv_reg.alive_vector.eval())

      relu_reg = op_reg_manager.get_regularizer(_get_op(scope +  '/Relu'))
      self.assertAllEqual(expected_alive[scope],
                          relu_reg.alive_vector.eval()) 
開發者ID:generalized-iou,項目名稱:g-tensorflow-models,代碼行數:25,代碼來源:op_regularizer_manager_test.py

示例5: testConcatOpGetRegularizer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fixed_size_partitioner [as 別名]
def testConcatOpGetRegularizer(self, use_batch_norm, use_partitioner):
    sc = self._batch_norm_scope() if use_batch_norm else []
    partitioner = tf.fixed_size_partitioner(2) if use_partitioner else None
    with tf.contrib.framework.arg_scope(sc):
      with tf.variable_scope(tf.get_variable_scope(), partitioner=partitioner):
        final_op = op_regularizer_stub.build_model()
    op_reg_manager = orm.OpRegularizerManager([final_op],
                                              op_regularizer_stub.MOCK_REG_DICT)
    expected_alive = op_regularizer_stub.expected_alive()

    expected = np.logical_or(expected_alive['conv4'],
                             expected_alive['concat'])
    with self.test_session():
      conv_reg = op_reg_manager.get_regularizer(_get_op('conv4/Conv2D'))
      self.assertAllEqual(expected, conv_reg.alive_vector.eval())

      relu_reg = op_reg_manager.get_regularizer(_get_op('conv4/Relu'))
      self.assertAllEqual(expected, relu_reg.alive_vector.eval()) 
開發者ID:generalized-iou,項目名稱:g-tensorflow-models,代碼行數:20,代碼來源:op_regularizer_manager_test.py

示例6: create_emb_for_encoder_and_decoder

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fixed_size_partitioner [as 別名]
def create_emb_for_encoder_and_decoder(tgt_vocab_size, tgt_embed_size, dtype=tf.float32, num_partitions=0, scope=None):

    """Create embedding matrix for both encoder and decoder.

  Args:
    tgt_vocab_size: An integer. The target vocab size.
    tgt_embed_size: An integer. The embedding dimension for the decoder's
      embedding.
    dtype: dtype of the embedding matrix. Default to float32.
    num_partitions: number of partitions used for the embedding vars.
    scope: VariableScope for the created subgraph. Default to "embedding".

  Returns:
    embedding_decoder: Decoder's embedding matrix.

  Raises:
    ValueError: if use share_vocab but source and target have different vocab
      size.
  """

    if num_partitions <= 1:
        partitioner = None
    else:
        partitioner = tf.fixed_size_partitioner(num_partitions)

    with tf.variable_scope(scope or "embeddings", dtype=dtype, partitioner=partitioner) as scope:
        with tf.variable_scope("decoder", partitioner=partitioner):
            embedding_decoder = tf.get_variable("embedding_decoder", [tgt_vocab_size, tgt_embed_size], dtype)

    return embedding_decoder 
開發者ID:neccam,項目名稱:nslt,代碼行數:32,代碼來源:model_helper.py

示例7: testFixedSizePartitioner

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fixed_size_partitioner [as 別名]
def testFixedSizePartitioner(self):
    with self.test_session():
      partitioner = tf.fixed_size_partitioner(5, axis=0)
      with tf.variable_scope("root", partitioner=partitioner):
        v0 = tf.get_variable("v0", dtype=tf.float32, shape=(10, 10))
        v0_list = v0._get_variable_list()
        v0_part = v0._get_partitions()
        self.assertEqual(len(v0_list), 5)
        self.assertAllEqual(v0_part, (5, 1)) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:11,代碼來源:partitioned_variables_test.py

示例8: testEvalMovingVarsWithPartitioner

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fixed_size_partitioner [as 別名]
def testEvalMovingVarsWithPartitioner(self):
    # This test makes sure that the moving-mean and moving-variance logic works
    # when `batch_norm` is called within a variable-scope that has a variable
    # partitioner.
    partitioner = tf.fixed_size_partitioner(2, axis=0)
    with tf.variable_scope(tf.get_variable_scope(), partitioner=partitioner):
      self.testEvalMovingVars() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:9,代碼來源:layers_test.py

示例9: TestSuccess

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fixed_size_partitioner [as 別名]
def TestSuccess(self, connectivity, partitioning, fused, use_resource):
    params = {
        'trainable': True,
        'normalizer_fn': layers.batch_norm,
        'normalizer_params': {
            'scale': True,
            'fused': fused
        }
    }

    partitioner = tf.fixed_size_partitioner(2) if partitioning else None
    with tf.variable_scope(
        tf.get_variable_scope(),
        partitioner=partitioner,
        use_resource=use_resource):
      with tf.contrib.framework.arg_scope(
          [layers.conv2d, layers.separable_conv2d], **params):
        build_model()

    sess = tf.Session()
    saver = tf.train.Saver()
    saver.restore(sess, os.path.join(FLAGS.test_tmpdir, CKPT_FILE_NAME))
    mapper = self.createMapper(connectivity)
    conv = get_op('conv1/Conv2D')
    sep_conv = get_op('sep_conv/separable_conv2d')
    with sess.as_default():
      self.assertAllClose(CONV1_GAMMA, mapper.get_gamma(conv).eval())
      self.assertAllClose(SEP_CONV_GAMMA, mapper.get_gamma(sep_conv).eval()) 
開發者ID:generalized-iou,項目名稱:g-tensorflow-models,代碼行數:30,代碼來源:gamma_mapper_test.py

示例10: testNoBatchNorm

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fixed_size_partitioner [as 別名]
def testNoBatchNorm(self, connectivity, partitioning):
    partitioner = tf.fixed_size_partitioner(2) if partitioning else None
    with tf.variable_scope(
        tf.get_variable_scope(), partitioner=partitioner):
      build_model()
    mapper = self.createMapper(connectivity)
    conv = get_op('conv1/Conv2D')
    self.assertEqual(None, mapper.get_gamma(conv)) 
開發者ID:generalized-iou,項目名稱:g-tensorflow-models,代碼行數:10,代碼來源:gamma_mapper_test.py

示例11: _train_and_check_params

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fixed_size_partitioner [as 別名]
def _train_and_check_params(self, example, max_neighbors, weight, bias,
                              expected_grad_from_weight,
                              expected_grad_from_bias):
    """Runs training for one step and verifies gradient-based updates."""

    def embedding_fn(features, unused_mode):
      # Computes y = w*x
      with tf.variable_scope(
          tf.get_variable_scope(),
          reuse=tf.AUTO_REUSE,
          auxiliary_name_scope=False):
        weight_tensor = tf.reshape(
            tf.get_variable(
                WEIGHT_VARIABLE,
                shape=[2, 1],
                partitioner=tf.fixed_size_partitioner(1)),
            shape=[-1, 2])

      x_tensor = tf.reshape(features[FEATURE_NAME], shape=[-1, 2])
      return tf.reduce_sum(
          tf.multiply(weight_tensor, x_tensor), 1, keep_dims=True)

    def optimizer_fn():
      return tf.train.GradientDescentOptimizer(LEARNING_RATE)

    base_est = self.build_linear_regressor(
        weight=weight, weight_shape=[2, 1], bias=bias, bias_shape=[1])

    graph_reg_config = nsl_configs.make_graph_reg_config(
        max_neighbors=max_neighbors, multiplier=1)
    graph_reg_est = nsl_estimator.add_graph_regularization(
        base_est, embedding_fn, optimizer_fn, graph_reg_config=graph_reg_config)

    input_fn = single_example_input_fn(
        example, input_shape=[2], max_neighbors=max_neighbors)
    graph_reg_est.train(input_fn=input_fn, steps=1)

    # Compute the new bias and weight values based on the gradients.
    expected_bias = bias - LEARNING_RATE * (expected_grad_from_bias)
    expected_weight = weight - LEARNING_RATE * (expected_grad_from_weight)

    # Check that the parameters of the linear regressor have the correct values.
    self.assertAllClose(expected_bias,
                        graph_reg_est.get_variable_value(BIAS_VARIABLE))
    self.assertAllClose(expected_weight,
                        graph_reg_est.get_variable_value(WEIGHT_VARIABLE)) 
開發者ID:tensorflow,項目名稱:neural-structured-learning,代碼行數:48,代碼來源:graph_regularization_test.py

示例12: _train_and_check_eval_results

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fixed_size_partitioner [as 別名]
def _train_and_check_eval_results(self, train_example, test_example,
                                    max_neighbors, weight, bias):
    """Verifies evaluation results for the graph-regularized model."""

    def embedding_fn(features, unused_mode):
      # Computes y = w*x
      with tf.variable_scope(
          tf.get_variable_scope(),
          reuse=tf.AUTO_REUSE,
          auxiliary_name_scope=False):
        weight_tensor = tf.reshape(
            tf.get_variable(
                WEIGHT_VARIABLE,
                shape=[2, 1],
                partitioner=tf.fixed_size_partitioner(1)),
            shape=[-1, 2])

      x_tensor = tf.reshape(features[FEATURE_NAME], shape=[-1, 2])
      return tf.reduce_sum(
          tf.multiply(weight_tensor, x_tensor), 1, keep_dims=True)

    def optimizer_fn():
      return tf.train.GradientDescentOptimizer(LEARNING_RATE)

    base_est = self.build_linear_regressor(
        weight=weight, weight_shape=[2, 1], bias=bias, bias_shape=[1])

    graph_reg_config = nsl_configs.make_graph_reg_config(
        max_neighbors=max_neighbors, multiplier=1)
    graph_reg_est = nsl_estimator.add_graph_regularization(
        base_est, embedding_fn, optimizer_fn, graph_reg_config=graph_reg_config)

    train_input_fn = single_example_input_fn(
        train_example, input_shape=[2], max_neighbors=max_neighbors)
    graph_reg_est.train(input_fn=train_input_fn, steps=1)

    # Evaluating the graph-regularized model should yield the same results
    # as evaluating the base model because model paramters are shared.
    eval_input_fn = single_example_input_fn(
        test_example, input_shape=[2], max_neighbors=0)
    graph_eval_results = graph_reg_est.evaluate(input_fn=eval_input_fn)
    base_eval_results = base_est.evaluate(input_fn=eval_input_fn)
    self.assertAllClose(base_eval_results, graph_eval_results) 
開發者ID:tensorflow,項目名稱:neural-structured-learning,代碼行數:45,代碼來源:graph_regularization_test.py


注:本文中的tensorflow.fixed_size_partitioner方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。