本文整理匯總了Python中tensorflow.fixed_size_partitioner方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.fixed_size_partitioner方法的具體用法?Python tensorflow.fixed_size_partitioner怎麽用?Python tensorflow.fixed_size_partitioner使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.fixed_size_partitioner方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_partitioner
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fixed_size_partitioner [as 別名]
def get_partitioner(min_num_partitions):
"""Return tf.fixed_size_partitioner with num_partitions
that determined by Parallax.
Args:
min_num_partitions: A minimum (default) number of partitions
without memory exception.
"""
if PARALLAX_MIN_PARTITIONS not in os.environ:
os.environ[PARALLAX_MIN_PARTITIONS] = str(min_num_partitions)
if PARALLAX_PARTITIONS in os.environ:
partitions = int(os.environ[PARALLAX_PARTITIONS])
else:
partitions = min_num_partitions
return tf.fixed_size_partitioner(partitions)
示例2: build_linear_regressor
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fixed_size_partitioner [as 別名]
def build_linear_regressor(self, weight, weight_shape, bias, bias_shape):
with tf.Graph().as_default():
# Use a partitioner that is known a priori because canned Estimators
# default to using one otherwise. This allows tests to access variables
# used in the underlying Estimator.
tf.get_variable(
name=WEIGHT_VARIABLE,
shape=weight_shape,
initializer=weight,
partitioner=tf.fixed_size_partitioner(1))
tf.get_variable(
name=BIAS_VARIABLE,
shape=bias_shape,
initializer=bias,
partitioner=tf.fixed_size_partitioner(1))
tf.Variable(100, name=tf.GraphKeys.GLOBAL_STEP, dtype=tf.int64)
with tf.Session() as sess:
sess.run([tf.global_variables_initializer()])
tf.train.Saver().save(sess, os.path.join(self.model_dir, 'model.ckpt'))
fc = tf.feature_column.numeric_column(
FEATURE_NAME, shape=np.array(weight).shape)
return tf.estimator.LinearRegressor(
feature_columns=(fc,), model_dir=self.model_dir, optimizer='SGD')
示例3: test_return_all_variables_from_checkpoint_with_partition
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fixed_size_partitioner [as 別名]
def test_return_all_variables_from_checkpoint_with_partition(self):
with tf.Graph().as_default():
partitioner = tf.fixed_size_partitioner(2)
variables = [
tf.get_variable(
name='weights', shape=(2, 2), partitioner=partitioner),
tf.Variable([1.0, 2.0], name='biases')
]
checkpoint_path = os.path.join(self.get_temp_dir(), 'model.ckpt')
init_op = tf.global_variables_initializer()
saver = tf.train.Saver(variables)
with self.test_session() as sess:
sess.run(init_op)
saver.save(sess, checkpoint_path)
out_variables = variables_helper.get_variables_available_in_checkpoint(
variables, checkpoint_path)
self.assertItemsEqual(out_variables, variables)
開發者ID:ShivangShekhar,項目名稱:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代碼行數:19,代碼來源:variables_helper_test.py
示例4: testSimpleOpGetRegularizer
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fixed_size_partitioner [as 別名]
def testSimpleOpGetRegularizer(self, use_batch_norm, use_partitioner, scope):
# Tests the alive patern of the conv and relu ops.
# use_batch_norm: A Boolean. Inidcats if batch norm should be used.
# use_partitioner: A Boolean. Inidcats if a fixed_size_partitioner should be
# used.
# scope: A String. with the scope to test.
sc = self._batch_norm_scope() if use_batch_norm else []
partitioner = tf.fixed_size_partitioner(2) if use_partitioner else None
with tf.contrib.framework.arg_scope(sc):
with tf.variable_scope(tf.get_variable_scope(), partitioner=partitioner):
final_op = op_regularizer_stub.build_model()
op_reg_manager = orm.OpRegularizerManager([final_op],
op_regularizer_stub.MOCK_REG_DICT)
expected_alive = op_regularizer_stub.expected_alive()
with self.test_session():
conv_reg = op_reg_manager.get_regularizer(_get_op(scope + '/Conv2D'))
self.assertAllEqual(expected_alive[scope],
conv_reg.alive_vector.eval())
relu_reg = op_reg_manager.get_regularizer(_get_op(scope + '/Relu'))
self.assertAllEqual(expected_alive[scope],
relu_reg.alive_vector.eval())
示例5: testConcatOpGetRegularizer
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fixed_size_partitioner [as 別名]
def testConcatOpGetRegularizer(self, use_batch_norm, use_partitioner):
sc = self._batch_norm_scope() if use_batch_norm else []
partitioner = tf.fixed_size_partitioner(2) if use_partitioner else None
with tf.contrib.framework.arg_scope(sc):
with tf.variable_scope(tf.get_variable_scope(), partitioner=partitioner):
final_op = op_regularizer_stub.build_model()
op_reg_manager = orm.OpRegularizerManager([final_op],
op_regularizer_stub.MOCK_REG_DICT)
expected_alive = op_regularizer_stub.expected_alive()
expected = np.logical_or(expected_alive['conv4'],
expected_alive['concat'])
with self.test_session():
conv_reg = op_reg_manager.get_regularizer(_get_op('conv4/Conv2D'))
self.assertAllEqual(expected, conv_reg.alive_vector.eval())
relu_reg = op_reg_manager.get_regularizer(_get_op('conv4/Relu'))
self.assertAllEqual(expected, relu_reg.alive_vector.eval())
示例6: create_emb_for_encoder_and_decoder
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fixed_size_partitioner [as 別名]
def create_emb_for_encoder_and_decoder(tgt_vocab_size, tgt_embed_size, dtype=tf.float32, num_partitions=0, scope=None):
"""Create embedding matrix for both encoder and decoder.
Args:
tgt_vocab_size: An integer. The target vocab size.
tgt_embed_size: An integer. The embedding dimension for the decoder's
embedding.
dtype: dtype of the embedding matrix. Default to float32.
num_partitions: number of partitions used for the embedding vars.
scope: VariableScope for the created subgraph. Default to "embedding".
Returns:
embedding_decoder: Decoder's embedding matrix.
Raises:
ValueError: if use share_vocab but source and target have different vocab
size.
"""
if num_partitions <= 1:
partitioner = None
else:
partitioner = tf.fixed_size_partitioner(num_partitions)
with tf.variable_scope(scope or "embeddings", dtype=dtype, partitioner=partitioner) as scope:
with tf.variable_scope("decoder", partitioner=partitioner):
embedding_decoder = tf.get_variable("embedding_decoder", [tgt_vocab_size, tgt_embed_size], dtype)
return embedding_decoder
示例7: testFixedSizePartitioner
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fixed_size_partitioner [as 別名]
def testFixedSizePartitioner(self):
with self.test_session():
partitioner = tf.fixed_size_partitioner(5, axis=0)
with tf.variable_scope("root", partitioner=partitioner):
v0 = tf.get_variable("v0", dtype=tf.float32, shape=(10, 10))
v0_list = v0._get_variable_list()
v0_part = v0._get_partitions()
self.assertEqual(len(v0_list), 5)
self.assertAllEqual(v0_part, (5, 1))
示例8: testEvalMovingVarsWithPartitioner
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fixed_size_partitioner [as 別名]
def testEvalMovingVarsWithPartitioner(self):
# This test makes sure that the moving-mean and moving-variance logic works
# when `batch_norm` is called within a variable-scope that has a variable
# partitioner.
partitioner = tf.fixed_size_partitioner(2, axis=0)
with tf.variable_scope(tf.get_variable_scope(), partitioner=partitioner):
self.testEvalMovingVars()
示例9: TestSuccess
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fixed_size_partitioner [as 別名]
def TestSuccess(self, connectivity, partitioning, fused, use_resource):
params = {
'trainable': True,
'normalizer_fn': layers.batch_norm,
'normalizer_params': {
'scale': True,
'fused': fused
}
}
partitioner = tf.fixed_size_partitioner(2) if partitioning else None
with tf.variable_scope(
tf.get_variable_scope(),
partitioner=partitioner,
use_resource=use_resource):
with tf.contrib.framework.arg_scope(
[layers.conv2d, layers.separable_conv2d], **params):
build_model()
sess = tf.Session()
saver = tf.train.Saver()
saver.restore(sess, os.path.join(FLAGS.test_tmpdir, CKPT_FILE_NAME))
mapper = self.createMapper(connectivity)
conv = get_op('conv1/Conv2D')
sep_conv = get_op('sep_conv/separable_conv2d')
with sess.as_default():
self.assertAllClose(CONV1_GAMMA, mapper.get_gamma(conv).eval())
self.assertAllClose(SEP_CONV_GAMMA, mapper.get_gamma(sep_conv).eval())
示例10: testNoBatchNorm
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fixed_size_partitioner [as 別名]
def testNoBatchNorm(self, connectivity, partitioning):
partitioner = tf.fixed_size_partitioner(2) if partitioning else None
with tf.variable_scope(
tf.get_variable_scope(), partitioner=partitioner):
build_model()
mapper = self.createMapper(connectivity)
conv = get_op('conv1/Conv2D')
self.assertEqual(None, mapper.get_gamma(conv))
示例11: _train_and_check_params
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fixed_size_partitioner [as 別名]
def _train_and_check_params(self, example, max_neighbors, weight, bias,
expected_grad_from_weight,
expected_grad_from_bias):
"""Runs training for one step and verifies gradient-based updates."""
def embedding_fn(features, unused_mode):
# Computes y = w*x
with tf.variable_scope(
tf.get_variable_scope(),
reuse=tf.AUTO_REUSE,
auxiliary_name_scope=False):
weight_tensor = tf.reshape(
tf.get_variable(
WEIGHT_VARIABLE,
shape=[2, 1],
partitioner=tf.fixed_size_partitioner(1)),
shape=[-1, 2])
x_tensor = tf.reshape(features[FEATURE_NAME], shape=[-1, 2])
return tf.reduce_sum(
tf.multiply(weight_tensor, x_tensor), 1, keep_dims=True)
def optimizer_fn():
return tf.train.GradientDescentOptimizer(LEARNING_RATE)
base_est = self.build_linear_regressor(
weight=weight, weight_shape=[2, 1], bias=bias, bias_shape=[1])
graph_reg_config = nsl_configs.make_graph_reg_config(
max_neighbors=max_neighbors, multiplier=1)
graph_reg_est = nsl_estimator.add_graph_regularization(
base_est, embedding_fn, optimizer_fn, graph_reg_config=graph_reg_config)
input_fn = single_example_input_fn(
example, input_shape=[2], max_neighbors=max_neighbors)
graph_reg_est.train(input_fn=input_fn, steps=1)
# Compute the new bias and weight values based on the gradients.
expected_bias = bias - LEARNING_RATE * (expected_grad_from_bias)
expected_weight = weight - LEARNING_RATE * (expected_grad_from_weight)
# Check that the parameters of the linear regressor have the correct values.
self.assertAllClose(expected_bias,
graph_reg_est.get_variable_value(BIAS_VARIABLE))
self.assertAllClose(expected_weight,
graph_reg_est.get_variable_value(WEIGHT_VARIABLE))
示例12: _train_and_check_eval_results
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fixed_size_partitioner [as 別名]
def _train_and_check_eval_results(self, train_example, test_example,
max_neighbors, weight, bias):
"""Verifies evaluation results for the graph-regularized model."""
def embedding_fn(features, unused_mode):
# Computes y = w*x
with tf.variable_scope(
tf.get_variable_scope(),
reuse=tf.AUTO_REUSE,
auxiliary_name_scope=False):
weight_tensor = tf.reshape(
tf.get_variable(
WEIGHT_VARIABLE,
shape=[2, 1],
partitioner=tf.fixed_size_partitioner(1)),
shape=[-1, 2])
x_tensor = tf.reshape(features[FEATURE_NAME], shape=[-1, 2])
return tf.reduce_sum(
tf.multiply(weight_tensor, x_tensor), 1, keep_dims=True)
def optimizer_fn():
return tf.train.GradientDescentOptimizer(LEARNING_RATE)
base_est = self.build_linear_regressor(
weight=weight, weight_shape=[2, 1], bias=bias, bias_shape=[1])
graph_reg_config = nsl_configs.make_graph_reg_config(
max_neighbors=max_neighbors, multiplier=1)
graph_reg_est = nsl_estimator.add_graph_regularization(
base_est, embedding_fn, optimizer_fn, graph_reg_config=graph_reg_config)
train_input_fn = single_example_input_fn(
train_example, input_shape=[2], max_neighbors=max_neighbors)
graph_reg_est.train(input_fn=train_input_fn, steps=1)
# Evaluating the graph-regularized model should yield the same results
# as evaluating the base model because model paramters are shared.
eval_input_fn = single_example_input_fn(
test_example, input_shape=[2], max_neighbors=0)
graph_eval_results = graph_reg_est.evaluate(input_fn=eval_input_fn)
base_eval_results = base_est.evaluate(input_fn=eval_input_fn)
self.assertAllClose(base_eval_results, graph_eval_results)