當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.fill方法代碼示例

本文整理匯總了Python中tensorflow.fill方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.fill方法的具體用法?Python tensorflow.fill怎麽用?Python tensorflow.fill使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.fill方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testRandomPixelValueScale

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fill [as 別名]
def testRandomPixelValueScale(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_pixel_value_scale, {}))
    images = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images}
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options)
    images_min = tf.to_float(images) * 0.9 / 255.0
    images_max = tf.to_float(images) * 1.1 / 255.0
    images = tensor_dict[fields.InputDataFields.image]
    values_greater = tf.greater_equal(images, images_min)
    values_less = tf.less_equal(images, images_max)
    values_true = tf.fill([1, 4, 4, 3], True)
    with self.test_session() as sess:
      (values_greater_, values_less_, values_true_) = sess.run(
          [values_greater, values_less, values_true])
      self.assertAllClose(values_greater_, values_true_)
      self.assertAllClose(values_less_, values_true_) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:25,代碼來源:preprocessor_test.py

示例2: simulate

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fill [as 別名]
def simulate(self, action):
    with tf.name_scope("environment/simulate"):  # Do we need this?
      initializer = (tf.zeros_like(self._observ),
                     tf.fill((len(self),), 0.0), tf.fill((len(self),), False))

      def not_done_step(a, _):
        reward, done = self._batch_env.simulate(action)
        with tf.control_dependencies([reward, done]):
          # TODO(piotrmilos): possibly ignore envs with done
          r0 = tf.maximum(a[0], self._batch_env.observ)
          r1 = tf.add(a[1], reward)
          r2 = tf.logical_or(a[2], done)

          return (r0, r1, r2)

      simulate_ret = tf.scan(not_done_step, tf.range(self.skip),
                             initializer=initializer, parallel_iterations=1,
                             infer_shape=False)
      simulate_ret = [ret[-1, ...] for ret in simulate_ret]

      with tf.control_dependencies([self._observ.assign(simulate_ret[0])]):
        return tf.identity(simulate_ret[1]), tf.identity(simulate_ret[2]) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:24,代碼來源:tf_atari_wrappers.py

示例3: initialize

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fill [as 別名]
def initialize(self, dtype=tf.float64):
        if self.tf_mean is None:
            if self.mean is not None:
                self.tf_mean = tf.Variable(self.mean, dtype=dtype)
            else:
                self.tf_mean = tf.Variable(tf.cast(tf.fill([self.dims], 0.0), dtype))

        if self.tf_covariance is None:
            if self.covariance is not None:
                self.tf_covariance = self.covariance
            else:
                self.tf_covariance = FullCovariance(self.dims)

            self.tf_covariance.initialize(dtype)

        if self.tf_ln2piD is None:
            self.tf_ln2piD = tf.constant(np.log(2 * np.pi) * self.dims, dtype=dtype) 
開發者ID:aakhundov,項目名稱:tf-example-models,代碼行數:19,代碼來源:gaussian_distribution.py

示例4: plot_fitted_data

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fill [as 別名]
def plot_fitted_data(points, c_means, c_variances):
    """Plots the data and given Gaussian components"""
    plt.plot(points[:, 0], points[:, 1], "b.", zorder=0)
    plt.plot(c_means[:, 0], c_means[:, 1], "r.", zorder=1)

    for i in range(c_means.shape[0]):
        std = np.sqrt(c_variances[i])
        plt.axes().add_artist(pat.Ellipse(
            c_means[i], 2 * std[0], 2 * std[1],
            fill=False, color="red", linewidth=2, zorder=1
        ))

    plt.show()


# PREPARING DATA

# generating DATA_POINTS points from a GMM with COMPONENTS components 
開發者ID:aakhundov,項目名稱:tf-example-models,代碼行數:20,代碼來源:tf_gmm.py

示例5: soften_labels

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fill [as 別名]
def soften_labels(bool_labels, softness=0.05, scope='soften_labels'):
  """Converts boolean labels into float32.

  Args:
    bool_labels: Tensor with dtype `boolean`
    softness: The float value to use for False.  1 - softness is implicitly used
              for True
    scope: passed to op_scope

  Returns:
    Tensor with same shape as bool_labels with dtype `float32` and values 0.05
    for False and 0.95 for True.
  """
  with tf.op_scope([bool_labels, softness], scope):
    label_shape = tf.shape(bool_labels, name='label_shape')
    return tf.where(bool_labels,
                    tf.fill(label_shape, 1.0 - softness, name='soft_true'),
                    tf.fill(label_shape, softness, name='soft_false')) 
開發者ID:google,項目名稱:ffn,代碼行數:20,代碼來源:inputs.py

示例6: where

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fill [as 別名]
def where(cond, true, false, name=None):
    """Similar to tf.where, but broadcasts scalar values."""
    with tf.name_scope(name, 'where', [cond, true, false]) as name:
        cond = tf.convert_to_tensor(cond, name='cond', dtype=tf.bool)
        true = tf.convert_to_tensor(true, name='true',
                                    dtype=false.dtype if isinstance(false, tf.Tensor) else None)
        false = tf.convert_to_tensor(false, name='false', dtype=true.dtype)
        if true.shape.rank == false.shape.rank == 0:
            shape = tf.shape(cond)
            true = tf.fill(shape, true)
            false = tf.fill(shape, false)
        elif true.shape.rank == 0:
            true = tf.fill(tf.shape(false), true)
        elif false.shape.rank == 0:
            false = tf.fill(tf.shape(true), false)
        return tf.where(cond, true, false, name=name) 
開發者ID:openai,項目名稱:lm-human-preferences,代碼行數:18,代碼來源:core.py

示例7: update_state

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fill [as 別名]
def update_state(self, y_true, y_pred, sample_weight=None):
        """
        Maybe have more fast implementation.
        """
        b = tf.shape(y_true)[0]
        max_width = tf.maximum(tf.shape(y_true)[1], tf.shape(y_pred)[1])
        logit_length = tf.fill([tf.shape(y_pred)[0]], tf.shape(y_pred)[1])        
        decoded, _ = tf.nn.ctc_greedy_decoder(
            inputs=tf.transpose(y_pred, perm=[1, 0, 2]),
            sequence_length=logit_length)
        y_true = tf.sparse.reset_shape(y_true, [b, max_width])
        y_pred = tf.sparse.reset_shape(decoded[0], [b, max_width])
        y_true = tf.sparse.to_dense(y_true, default_value=-1)
        y_pred = tf.sparse.to_dense(y_pred, default_value=-1)
        y_true = tf.cast(y_true, tf.int32)
        y_pred = tf.cast(y_pred, tf.int32)
        values = tf.math.reduce_any(tf.math.not_equal(y_true, y_pred), axis=1)
        values = tf.cast(values, tf.int32)
        values = tf.reduce_sum(values)
        self.total.assign_add(b)
        self.count.assign_add(b - values) 
開發者ID:FLming,項目名稱:CRNN.tf2,代碼行數:23,代碼來源:metrics.py

示例8: decode

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fill [as 別名]
def decode(self, inputs, from_pred=True, method='greedy'):
        if from_pred:
            logit_length = tf.fill([tf.shape(inputs)[0]], tf.shape(inputs)[1])
            if method == 'greedy':
                decoded, _ = tf.nn.ctc_greedy_decoder(
                    inputs=tf.transpose(inputs, perm=[1, 0, 2]),
                    sequence_length=logit_length,
                    merge_repeated=self.merge_repeated)
            elif method == 'beam_search':
                decoded, _ = tf.nn.ctc_beam_search_decoder(
                    inputs=tf.transpose(inputs, perm=[1, 0, 2]),
                    sequence_length=logit_length)
            inputs = decoded[0]
        decoded = tf.sparse.to_dense(inputs, 
                                     default_value=self.blank_index).numpy()
        decoded = self.map2string(decoded)
        return decoded 
開發者ID:FLming,項目名稱:CRNN.tf2,代碼行數:19,代碼來源:dataset.py

示例9: Uniform

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fill [as 別名]
def Uniform(name=None):
    X = tf.placeholder(config.dtype, name=name)

    Distribution.logp = tf.fill(tf.shape(X), config.dtype(0))

    def integral(lower, upper):
        return tf.cond(
            tf.logical_or(
                tf.is_inf(tf.cast(lower, config.dtype)),
                tf.is_inf(tf.cast(upper, config.dtype))
            ),
            lambda: tf.constant(1, dtype=config.dtype),
            lambda: tf.cast(upper, config.dtype) - tf.cast(lower, config.dtype),
        )

    Distribution.integral = integral

    return X 
開發者ID:tensorprob,項目名稱:tensorprob,代碼行數:20,代碼來源:uniform.py

示例10: UniformInt

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fill [as 別名]
def UniformInt(name=None):
    X = tf.placeholder(config.int_dtype, name=name)

    Distribution.logp = tf.fill(tf.shape(X), config.dtype(0))

    def integral(lower, upper):
        val = tf.cond(
            tf.logical_or(
                tf.is_inf(tf.ceil(tf.cast(lower, config.dtype))),
                tf.is_inf(tf.floor(tf.cast(upper, config.dtype)))
            ),
            lambda: tf.constant(1, dtype=config.dtype),
            lambda: tf.cast(upper, config.dtype) - tf.cast(lower, config.dtype),
        )
        return val

    Distribution.integral = integral

    return X 
開發者ID:tensorprob,項目名稱:tensorprob,代碼行數:21,代碼來源:uniform.py

示例11: version_1

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fill [as 別名]
def version_1(cls, node, **kwargs):
    tensor_dict = kwargs["tensor_dict"]

    if "shape" in node.attrs:
      shape = node.attrs["shape"]
    else:
      shape = tensor_dict[
          node.inputs[0]].get_shape().as_list() if node.attrs.get(
              "input_as_shape", 0) == 0 else tensor_dict[node.inputs[0]]

    if "extra_shape" in node.attrs:
      shape = tf.concat([shape, node.attrs["extra_shape"]], 0)

    value = node.attrs.get("value", 0.)

    if "dtype" in node.attrs:
      return [tf.cast(tf.fill(shape, value), dtype=node.attrs["dtype"])]

    return [cls.make_tensor_from_onnx_node(node, inputs=[shape], **kwargs)] 
開發者ID:onnx,項目名稱:onnx-tensorflow,代碼行數:21,代碼來源:constant_fill.py

示例12: reset

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fill [as 別名]
def reset(self, entries_to_reset):
    """Reset the entries in the memory.

    Args:
      entries_to_reset: a 1D tensor.
    Returns:
      the reset op.
    """
    num_updates = tf.size(entries_to_reset)
    update_vals = tf.scatter_update(
        self.mem_vals, entries_to_reset,
        tf.tile(tf.expand_dims(
            tf.fill([self.memory_size, self.val_depth], .0), 0),
                [num_updates, 1, 1]))
    update_logits = tf.scatter_update(
        self.mean_logits, entries_to_reset,
        tf.tile(tf.expand_dims(
            tf.fill([self.memory_size], .0), 0),
                [num_updates, 1]))
    reset_op = tf.group([update_vals, update_logits])
    return reset_op 
開發者ID:yyht,項目名稱:BERT,代碼行數:23,代碼來源:transformer_memory.py

示例13: get_multi_dataset

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fill [as 別名]
def get_multi_dataset(datasets, pmf=None):
  """Returns a Dataset that samples records from one or more Datasets.

  Args:
    datasets: A list of one or more Dataset objects to sample from.
    pmf: A tensor of shape [len(datasets)], the probabilities to sample each
      dataset with. This tensor is often constructed with the global_step. If
      this is None, we sample from the datasets uniformly at random.

  Returns:
    A Dataset object containing records from multiple datasets. Note that
    because this dataset iterates through other datasets it is stateful, thus
    you will need to call make_initializable_iterator instead of
    make_one_shot_iterator.
  """
  pmf = tf.fill([len(datasets)], 1.0 / len(datasets)) if pmf is None else pmf
  samplers = [d.repeat().make_one_shot_iterator().get_next for d in datasets]
  sample = lambda _: categorical_case(pmf, samplers)
  return tf.data.Dataset.from_tensors([]).repeat().map(sample) 
開發者ID:yyht,項目名稱:BERT,代碼行數:21,代碼來源:multi_problem_v2.py

示例14: _build

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fill [as 別名]
def _build(self, obs_input, act_input, name=None):
        """Build model given input placeholder(s).

        Args:
            obs_input (tf.Tensor): Tensor input for state.
            act_input (tf.Tensor): Tensor input for action.
            name (str): Inner model name, also the variable scope of the
                inner model, if exist. One example is
                garage.tf.models.Sequential.

        Return:
            tf.Tensor: Tensor output of the model.

        """
        del name
        del act_input
        return_var = tf.compat.v1.get_variable(
            'return_var', (), initializer=tf.constant_initializer(0.5))
        return tf.fill((tf.shape(obs_input)[0], self.output_dim), return_var) 
開發者ID:rlworkgroup,項目名稱:garage,代碼行數:21,代碼來源:simple_mlp_merge_model.py

示例15: _build

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fill [as 別名]
def _build(self, obs_input, name=None):
        """Build model given input placeholder(s).

        Args:
            obs_input (tf.Tensor): Tensor input for state.
            name (str): Inner model name, also the variable scope of the
                inner model, if exist. One example is
                garage.tf.models.Sequential.

        Return:
            tf.Tensor: Tensor output of the model.

        """
        del name
        return_var = tf.compat.v1.get_variable(
            'return_var', (), initializer=tf.constant_initializer(0.5))
        return tf.fill((tf.shape(obs_input)[0], self.output_dim), return_var) 
開發者ID:rlworkgroup,項目名稱:garage,代碼行數:19,代碼來源:simple_mlp_model.py


注:本文中的tensorflow.fill方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。