本文整理匯總了Python中tensorflow.fft方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.fft方法的具體用法?Python tensorflow.fft怎麽用?Python tensorflow.fft使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.fft方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: call
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fft [as 別名]
def call(self, inputx):
if not inputx.dtype in [tf.complex64, tf.complex128]:
print('Warning: inputx is not complex. Converting.', file=sys.stderr)
# if inputx is float, this will assume 0 imag channel
inputx = tf.cast(inputx, tf.complex64)
# get the right fft
if self.ndims == 1:
fft = tf.fft
elif self.ndims == 2:
fft = tf.fft2d
else:
fft = tf.fft3d
perm_dims = [0, self.ndims + 1] + list(range(1, self.ndims + 1))
invert_perm_ndims = [0] + list(range(2, self.ndims + 2)) + [1]
perm_inputx = K.permute_dimensions(inputx, perm_dims) # [batch_size, nb_features, *vol_size]
fft_inputx = fft(perm_inputx)
return K.permute_dimensions(fft_inputx, invert_perm_ndims)
示例2: fftshift
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fft [as 別名]
def fftshift(im, axis=-1, name='fftshift'):
"""Perform fft shift.
This function assumes that the axis to perform fftshift is divisible by 2.
Args:
axis: Integer or array of integers for axes to perform shift operation.
name: TensorFlow name scope.
Returns:
Tensor with the contents fft shifted.
"""
with tf.name_scope(name):
if not hasattr(axis, '__iter__'):
axis = [axis]
output = im
for a in axis:
split0, split1 = tf.split(output, 2, axis=a)
output = tf.concat((split1, split0), axis=a)
return output
示例3: _fft
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fft [as 別名]
def _fft(bottom, sequential, compute_size):
if sequential:
return sequential_batch_fft(bottom, compute_size)
else:
return tf.fft(bottom)
示例4: spectrogram
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fft [as 別名]
def spectrogram(x, frame_length, nfft=1024):
''' Spectrogram of non-overlapping window '''
with tf.name_scope('Spectrogram'):
shape = tf.shape(x)
b = shape[0]
D = frame_length
t = shape[1] // D
x = tf.reshape(x, [b, t, D])
window = tf.contrib.signal.hann_window(frame_length)
window = tf.expand_dims(window, 0)
window = tf.expand_dims(window, 0) # [1, 1, L]
x = x * window
pad = tf.zeros([b, t, nfft - D])
x = tf.concat([x, pad], -1)
x = tf.cast(x, tf.complex64)
X = tf.fft(x) # TF's API doesn't do padding automatically yet
X = tf.log(tf.abs(X) + 1e-2)
X = X[:, :, :nfft//2 + 1]
X = tf.transpose(X, [0, 2, 1])
X = tf.reverse(X, [1])
X = tf.expand_dims(X, -1)
X = (X - tf.reduce_min(X)) / (tf.reduce_max(X) - tf.reduce_min(X))
X = gray2jet(X)
tf.summary.image('spectrogram', X)
return X
示例5: _npFFT
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fft [as 別名]
def _npFFT(self, x, rank):
if rank == 1:
return np.fft.fft2(x, axes=(-1,))
elif rank == 2:
return np.fft.fft2(x, axes=(-2, -1))
elif rank == 3:
return np.fft.fft2(x, axes=(-3, -2, -1))
else:
raise ValueError("invalid rank")
示例6: _npIFFT
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fft [as 別名]
def _npIFFT(self, x, rank):
if rank == 1:
return np.fft.ifft2(x, axes=(-1,))
elif rank == 2:
return np.fft.ifft2(x, axes=(-2, -1))
elif rank == 3:
return np.fft.ifft2(x, axes=(-3, -2, -1))
else:
raise ValueError("invalid rank")
示例7: _tfFFTForRank
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fft [as 別名]
def _tfFFTForRank(self, rank):
if rank == 1:
return tf.fft
elif rank == 2:
return tf.fft2d
elif rank == 3:
return tf.fft3d
else:
raise ValueError("invalid rank")
示例8: fftc
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fft [as 別名]
def fftc(im,
data_format='channels_last',
orthonorm=True,
transpose=False,
name='fftc'):
"""Centered FFT on last non-channel dimension."""
with tf.name_scope(name):
im_out = im
if data_format == 'channels_last':
permute_orig = np.arange(len(im.shape))
permute = permute_orig.copy()
permute[-2] = permute_orig[-1]
permute[-1] = permute_orig[-2]
im_out = tf.transpose(im_out, permute)
if orthonorm:
fftscale = tf.sqrt(tf.cast(im_out.shape[-1], tf.float32))
else:
fftscale = 1.0
fftscale = tf.cast(fftscale, dtype=tf.complex64)
im_out = fftshift(im_out, axis=-1)
if transpose:
im_out = tf.ifft(im_out) * fftscale
else:
im_out = tf.fft(im_out) / fftscale
im_out = fftshift(im_out, axis=-1)
if data_format == 'channels_last':
im_out = tf.transpose(im_out, permute)
return im_out
示例9: _cconv
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fft [as 別名]
def _cconv(self, a, b):
return tf.ifft(tf.fft(a) * tf.fft(b)).real
示例10: _ccorr
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fft [as 別名]
def _ccorr(self, a, b):
a = tf.cast(a, tf.complex64)
b = tf.cast(b, tf.complex64)
return tf.real(tf.ifft(tf.conj(tf.fft(a)) * tf.fft(b)))
示例11: fft
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import fft [as 別名]
def fft(x, *args, **kwargs):
""" Return np.fft.fft or tf.fft according to input. """
return (tf.fft(x, *args, **kwargs) if istf(x)
else np.fft.fft(x, *args, **kwargs))