本文整理匯總了Python中tensorflow.eye方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.eye方法的具體用法?Python tensorflow.eye怎麽用?Python tensorflow.eye使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.eye方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: rank_loss
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import eye [as 別名]
def rank_loss(sentence_emb, image_emb, margin=0.2):
"""Experimental rank loss, thanks to kkurach@ for the code."""
with tf.name_scope("rank_loss"):
# Normalize first as this is assumed in cosine similarity later.
sentence_emb = tf.nn.l2_normalize(sentence_emb, 1)
image_emb = tf.nn.l2_normalize(image_emb, 1)
# Both sentence_emb and image_emb have size [batch, depth].
scores = tf.matmul(image_emb, tf.transpose(sentence_emb)) # [batch, batch]
diagonal = tf.diag_part(scores) # [batch]
cost_s = tf.maximum(0.0, margin - diagonal + scores) # [batch, batch]
cost_im = tf.maximum(
0.0, margin - tf.reshape(diagonal, [-1, 1]) + scores) # [batch, batch]
# Clear diagonals.
batch_size = tf.shape(sentence_emb)[0]
empty_diagonal_mat = tf.ones_like(cost_s) - tf.eye(batch_size)
cost_s *= empty_diagonal_mat
cost_im *= empty_diagonal_mat
return tf.reduce_mean(cost_s) + tf.reduce_mean(cost_im)
示例2: gather_indices_2d
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import eye [as 別名]
def gather_indices_2d(x, block_shape, block_stride):
"""Getting gather indices."""
# making an identity matrix kernel
kernel = tf.eye(block_shape[0] * block_shape[1])
kernel = reshape_range(kernel, 0, 1, [block_shape[0], block_shape[1], 1])
# making indices [1, h, w, 1] to appy convs
x_shape = common_layers.shape_list(x)
indices = tf.range(x_shape[2] * x_shape[3])
indices = tf.reshape(indices, [1, x_shape[2], x_shape[3], 1])
indices = tf.nn.conv2d(
tf.cast(indices, tf.float32),
kernel,
strides=[1, block_stride[0], block_stride[1], 1],
padding="VALID")
# making indices [num_blocks, dim] to gather
dims = common_layers.shape_list(indices)[:3]
if all([isinstance(dim, int) for dim in dims]):
num_blocks = functools.reduce(operator.mul, dims, 1)
else:
num_blocks = tf.reduce_prod(dims)
indices = tf.reshape(indices, [num_blocks, -1])
return tf.cast(indices, tf.int32)
示例3: _build_relation_feature
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import eye [as 別名]
def _build_relation_feature(self):
if self.feature_type == 'id':
self.relation_dim = self.n_relations
self.relation_features = tf.eye(self.n_relations, dtype=tf.float64)
elif self.feature_type == 'bow':
bow = np.load('../data/' + self.dataset + '/bow.npy')
self.relation_dim = bow.shape[1]
self.relation_features = tf.constant(bow, tf.float64)
elif self.feature_type == 'bert':
bert = np.load('../data/' + self.dataset + '/bert.npy')
self.relation_dim = bert.shape[1]
self.relation_features = tf.constant(bert, tf.float64)
# the feature of the last relation (the null relation) is a zero vector
self.relation_features = tf.concat([self.relation_features, tf.zeros([1, self.relation_dim], tf.float64)],
axis=0, name='relation_features')
示例4: radial_symmetry
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import eye [as 別名]
def radial_symmetry(self, d_cutoff, d, atom_numbers):
""" Radial Symmetry Function """
embedding = tf.eye(np.max(self.atom_cases) + 1)
atom_numbers_embedded = tf.nn.embedding_lookup(embedding, atom_numbers)
Rs = np.linspace(0., self.radial_cutoff, self.radial_length)
ita = np.ones_like(Rs) * 3 / (Rs[1] - Rs[0])**2
Rs = tf.cast(np.reshape(Rs, (1, 1, 1, -1)), tf.float32)
ita = tf.cast(np.reshape(ita, (1, 1, 1, -1)), tf.float32)
length = ita.get_shape().as_list()[-1]
d_cutoff = tf.stack([d_cutoff] * length, axis=3)
d = tf.stack([d] * length, axis=3)
out = tf.exp(-ita * tf.square(d - Rs)) * d_cutoff
if self.atomic_number_differentiated:
out_tensors = []
for atom_type in self.atom_cases:
selected_atoms = tf.expand_dims(
tf.expand_dims(atom_numbers_embedded[:, :, atom_type], axis=1),
axis=3)
out_tensors.append(tf.reduce_sum(out * selected_atoms, axis=2))
return tf.concat(out_tensors, axis=2)
else:
return tf.reduce_sum(out, axis=2)
示例5: log_coral_loss
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import eye [as 別名]
def log_coral_loss(self, h_src, h_trg, gamma=1e-3):
# regularized covariances result in inf or nan
# First: subtract the mean from the data matrix
batch_size = tf.to_float(tf.shape(h_src)[0])
h_src = h_src - tf.reduce_mean(h_src, axis=0)
h_trg = h_trg - tf.reduce_mean(h_trg, axis=0 )
cov_source = (1./(batch_size-1)) * tf.matmul( h_src, h_src, transpose_a=True) #+ gamma * tf.eye(self.hidden_repr_size)
cov_target = (1./(batch_size-1)) * tf.matmul( h_trg, h_trg, transpose_a=True) #+ gamma * tf.eye(self.hidden_repr_size)
#eigen decomposition
eig_source = tf.self_adjoint_eig(cov_source)
eig_target = tf.self_adjoint_eig(cov_target)
log_cov_source = tf.matmul( eig_source[1] , tf.matmul(tf.diag( tf.log(eig_source[0]) ), eig_source[1], transpose_b=True) )
log_cov_target = tf.matmul( eig_target[1] , tf.matmul(tf.diag( tf.log(eig_target[0]) ), eig_target[1], transpose_b=True) )
# Returns the Frobenius norm
return tf.reduce_mean(tf.square( tf.subtract(log_cov_source,log_cov_target)))
#~ return tf.reduce_mean(tf.reduce_max(eig_target[0]))
#~ return tf.to_float(tf.equal(tf.count_nonzero(h_src), tf.count_nonzero(h_src)))
示例6: orthogonal_regularizer
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import eye [as 別名]
def orthogonal_regularizer(scale) :
""" Defining the Orthogonal regularizer and return the function at last to be used in Conv layer as kernel regularizer"""
def ortho_reg(w) :
""" Reshaping the matrxi in to 2D tensor for enforcing orthogonality"""
_, _, _, c = w.get_shape().as_list()
w = tf.reshape(w, [-1, c])
""" Declaring a Identity Tensor of appropriate size"""
identity = tf.eye(c)
""" Regularizer Wt*W - I """
w_transpose = tf.transpose(w)
w_mul = tf.matmul(w_transpose, w)
reg = tf.subtract(w_mul, identity)
"""Calculating the Loss Obtained"""
ortho_loss = tf.nn.l2_loss(reg)
return scale * ortho_loss
return ortho_reg
示例7: orthogonal_regularizer_fully
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import eye [as 別名]
def orthogonal_regularizer_fully(scale) :
""" Defining the Orthogonal regularizer and return the function at last to be used in Fully Connected Layer """
def ortho_reg_fully(w) :
""" Reshaping the matrix in to 2D tensor for enforcing orthogonality"""
_, c = w.get_shape().as_list()
"""Declaring a Identity Tensor of appropriate size"""
identity = tf.eye(c)
w_transpose = tf.transpose(w)
w_mul = tf.matmul(w_transpose, w)
reg = tf.subtract(w_mul, identity)
""" Calculating the Loss """
ortho_loss = tf.nn.l2_loss(reg)
return scale * ortho_loss
return ortho_reg_fully
示例8: batch_rodrigues
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import eye [as 別名]
def batch_rodrigues(theta, name=None):
"""
Theta is N x 3
"""
with tf.variable_scope(name, "batch_rodrigues", [theta]):
batch_size = tf.shape(theta)[0]
angle = tf.expand_dims(tf.norm(theta + 1e-8, axis=1), -1)
r = tf.expand_dims(tf.div(theta, angle), -1)
angle = tf.expand_dims(angle, -1)
cos = tf.cos(angle)
sin = tf.sin(angle)
outer = tf.matmul(r, r, transpose_b=True, name="outer")
eyes = tf.tile(tf.expand_dims(tf.eye(3), 0), [batch_size, 1, 1])
R = cos * eyes + (1 - cos) * outer + sin * batch_skew(
r, batch_size=batch_size)
return R
示例9: batch_lrotmin
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import eye [as 別名]
def batch_lrotmin(theta, name=None):
""" NOTE: not used bc I want to reuse R and this is simple.
Output of this is used to compute joint-to-pose blend shape mapping.
Equation 9 in SMPL paper.
Args:
pose: `Tensor`, N x 72 vector holding the axis-angle rep of K joints.
This includes the global rotation so K=24
Returns
diff_vec : `Tensor`: N x 207 rotation matrix of 23=(K-1) joints with identity subtracted.,
"""
with tf.variable_scope(name, "batch_lrotmin", [theta]):
with tf.variable_scope("ignore_global"):
theta = theta[:, 3:]
# N*23 x 3 x 3
Rs = batch_rodrigues(tf.reshape(theta, [-1, 3]))
lrotmin = tf.reshape(Rs - tf.eye(3), [-1, 207])
return lrotmin
示例10: radial_symmetry
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import eye [as 別名]
def radial_symmetry(self, d_cutoff, d, atom_numbers):
""" Radial Symmetry Function """
embedding = tf.eye(np.max(self.atom_cases) + 1)
atom_numbers_embedded = tf.nn.embedding_lookup(embedding, atom_numbers)
Rs = np.linspace(0., self.radial_cutoff, self.radial_length)
ita = np.ones_like(Rs) * 3 / (Rs[1] - Rs[0])**2
Rs = tf.to_float(np.reshape(Rs, (1, 1, 1, -1)))
ita = tf.to_float(np.reshape(ita, (1, 1, 1, -1)))
length = ita.get_shape().as_list()[-1]
d_cutoff = tf.stack([d_cutoff] * length, axis=3)
d = tf.stack([d] * length, axis=3)
out = tf.exp(-ita * tf.square(d - Rs)) * d_cutoff
if self.atomic_number_differentiated:
out_tensors = []
for atom_type in self.atom_cases:
selected_atoms = tf.expand_dims(
tf.expand_dims(atom_numbers_embedded[:, :, atom_type], axis=1),
axis=3)
out_tensors.append(tf.reduce_sum(out * selected_atoms, axis=2))
return tf.concat(out_tensors, axis=2)
else:
return tf.reduce_sum(out, axis=2)
示例11: test_softmax_masking
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import eye [as 別名]
def test_softmax_masking(self):
max_len = 3
axis = 1
logits = tf.eye(max_len)
seq_len = [1,2,2]
mask = tf.sequence_mask(seq_len, max_len)
r = softmax_with_masking(logits, mask, axis)
r = np.array(r)
d = math.exp(1) + math.exp(0)
expected = np.array([
[1,0,0],
[math.exp(0)/d, math.exp(1)/d,0],
[0.5, 0.5, 0],
])
np.testing.assert_almost_equal(r, expected)
示例12: execute_reasoning
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import eye [as 別名]
def execute_reasoning(args, features, **kwargs):
d_eye = tf.eye(args["max_decode_iterations"])
iteration_id = [
tf.tile(tf.expand_dims(d_eye[i], 0), [features["d_batch_size"], 1])
for i in range(args["max_decode_iterations"])
]
inputs = [iteration_id]
final_output, out_taps = static_decode(args, features, inputs, **kwargs)
final_output = dynamic_assert_shape(final_output, [features["d_batch_size"], args["output_width"]])
return final_output, out_taps
示例13: testLossFunctionByName
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import eye [as 別名]
def testLossFunctionByName(self):
"""Ensure loss functions can be identified by name."""
with tf.Graph().as_default():
logits = tf.eye(2)
lc = layer_collection.LayerCollection()
# Create a new loss function by name.
lc.register_categorical_predictive_distribution(logits, name='loss1')
self.assertEqual(1, len(lc.towers_by_loss))
# Add logits to same loss function.
lc.register_categorical_predictive_distribution(
logits, name='loss1', reuse=True)
self.assertEqual(1, len(lc.towers_by_loss))
# Add another new loss function.
lc.register_categorical_predictive_distribution(logits, name='loss2')
self.assertEqual(2, len(lc.towers_by_loss))
示例14: get_matpower
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import eye [as 別名]
def get_matpower(self, exp, damping_func):
# Note that this function returns a variable which gets updated by the
# inverse ops. It may be stale / inconsistent with the latest value of
# self.cov (except when exp == 1).
if exp != 1:
damping_id = graph_func_to_id(damping_func)
matpower = self._matpower_by_exp_and_damping[(exp, damping_id)]
else:
cov = self.cov
identity = tf.eye(cov.shape.as_list()[0], dtype=cov.dtype)
matpower = cov + tf.cast(damping_func(), dtype=self.cov.dtype)*identity
assert matpower.shape.ndims == 2
return lo.LinearOperatorFullMatrix(matpower,
is_non_singular=True,
is_self_adjoint=True,
is_positive_definite=True,
is_square=True)
示例15: _add_orthogonal_constraint
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import eye [as 別名]
def _add_orthogonal_constraint(self, filt, n_filt):
filt = tf.reshape(filt, [-1, n_filt])
inner_pro = tf.matmul(tf.transpose(filt), filt)
loss = 2e-4*tf.nn.l2_loss(inner_pro-tf.eye(n_filt))
tf.add_to_collection('orth_constraint', loss)