當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.extract_image_patches方法代碼示例

本文整理匯總了Python中tensorflow.extract_image_patches方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.extract_image_patches方法的具體用法?Python tensorflow.extract_image_patches怎麽用?Python tensorflow.extract_image_patches使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.extract_image_patches方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _VerifyValues

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import extract_image_patches [as 別名]
def _VerifyValues(self, image, ksizes, strides, rates, padding, patches):
    """Tests input-output pairs for the ExtractImagePatches op.

    Args:
      image: Input tensor with shape: [batch, in_rows, in_cols, depth].
      ksizes: Patch size specified as: [ksize_rows, ksize_cols].
      strides: Output strides, specified as [stride_rows, stride_cols].
      rates: Atrous rates, specified as [rate_rows, rate_cols].
      padding: Padding type.
      patches: Expected output.
    """
    ksizes = [1] + ksizes + [1]
    strides = [1] + strides + [1]
    rates = [1] + rates + [1]

    with self.test_session(use_gpu=True):
      out_tensor = tf.extract_image_patches(
          tf.constant(image),
          ksizes=ksizes,
          strides=strides,
          rates=rates,
          padding=padding,
          name="im2col")
      self.assertAllClose(patches, out_tensor.eval()) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:26,代碼來源:extract_image_patches_op_test.py

示例2: patch_decomposition

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import extract_image_patches [as 別名]
def patch_decomposition(self, T_features):
        # patch decomposition
        patch_size = 1
        patches_as_depth_vectors = tf.extract_image_patches(
            images=T_features, ksizes=[1, patch_size, patch_size, 1],
            strides=[1, 1, 1, 1], rates=[1, 1, 1, 1], padding='VALID',
            name='patches_as_depth_vectors')

        self.patches_NHWC = tf.reshape(
            patches_as_depth_vectors,
            shape=[-1, patch_size, patch_size, patches_as_depth_vectors.shape[3].value],
            name='patches_PHWC')

        self.patches_HWCN = tf.transpose(
            self.patches_NHWC,
            perm=[1, 2, 3, 0],
            name='patches_HWCP')  # tf.conv2 ready format

        return self.patches_HWCN 
開發者ID:shepnerd,項目名稱:inpainting_gmcnn,代碼行數:21,代碼來源:ops.py

示例3: compute_cost_volume

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import extract_image_patches [as 別名]
def compute_cost_volume(x1, x2, H, W, channel, d=9):
    x1 = tf.nn.l2_normalize(x1, axis=3)
    x2 = tf.nn.l2_normalize(x2, axis=3)        

    # choice 1: use tf.extract_image_patches, may not work for some tensorflow versions
    x2_patches = tf.extract_image_patches(x2, [1, d, d, 1], strides=[1, 1, 1, 1], rates=[1, 1, 1, 1], padding='SAME')
    
    # choice 2: use convolution, but is slower than choice 1
    # out_channels = d * d
    # w = tf.eye(out_channels*channel, dtype=tf.float32)
    # w = tf.reshape(w, (d, d, channel, out_channels*channel))
    # x2_patches = tf.nn.conv2d(x2, w, strides=[1, 1, 1, 1], padding='SAME')
    
    x2_patches = tf.reshape(x2_patches, [-1, H, W, d, d, channel])
    x1_reshape = tf.reshape(x1, [-1, H, W, 1, 1, channel])
    x1_dot_x2 = tf.multiply(x1_reshape, x2_patches)
    
    cost_volume = tf.reduce_sum(x1_dot_x2, axis=-1)
    #cost_volume = tf.reduce_mean(x1_dot_x2, axis=-1)
    cost_volume = tf.reshape(cost_volume, [-1, H, W, d*d])   
    return cost_volume 
開發者ID:ppliuboy,項目名稱:SelFlow,代碼行數:23,代碼來源:network.py

示例4: extract_patches_fn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import extract_image_patches [as 別名]
def extract_patches_fn(image: tf.Tensor, patch_shape: Tuple[int, int], offsets: Tuple[int, int]) -> tf.Tensor:
    """Will cut a given image into patches.

    :param image: tf.Tensor
    :param patch_shape: shape of the extracted patches [h, w]
    :param offsets: offset to add to the origin of first patch top-right coordinate, useful during data augmentation \
    to have slighlty different patches each time. This value will be multiplied by [h/2, w/2] (range values [0,1])
    :return: patches [batch_patches, h, w, c]
    """
    with tf.name_scope('patch_extraction'):
        h, w = patch_shape
        c = image.get_shape()[-1]

        offset_h = tf.cast(tf.round(offsets[0] * h // 2), dtype=tf.int32)
        offset_w = tf.cast(tf.round(offsets[1] * w // 2), dtype=tf.int32)
        offset_img = image[offset_h:, offset_w:, :]
        offset_img = offset_img[None, :, :, :]

        patches = tf.extract_image_patches(offset_img, ksizes=[1, h, w, 1], strides=[1, h // 2, w // 2, 1],
                                           rates=[1, 1, 1, 1], padding='VALID')
        patches_shape = tf.shape(patches)
        return tf.reshape(patches, [tf.reduce_prod(patches_shape[:3]), h, w, int(c)]) 
開發者ID:dhlab-epfl,項目名稱:dhSegment,代碼行數:24,代碼來源:input_utils.py

示例5: kernel_tile

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import extract_image_patches [as 別名]
def kernel_tile(input, kernel, stride):
    # output = tf.extract_image_patches(input, ksizes=[1, kernel, kernel, 1], strides=[1, stride, stride, 1], rates=[1, 1, 1, 1], padding='VALID')

    input_shape = input.get_shape()
    tile_filter = np.zeros(shape=[kernel, kernel, input_shape[3],
                                  kernel * kernel], dtype=np.float32)
    for i in range(kernel):
        for j in range(kernel):
            tile_filter[i, j, :, i * kernel + j] = 1.0

    tile_filter_op = tf.constant(tile_filter, dtype=tf.float32)
    output = tf.nn.depthwise_conv2d(input, tile_filter_op, strides=[
                                    1, stride, stride, 1], padding='VALID')
    output_shape = output.get_shape()
    output = tf.reshape(output, shape=[int(output_shape[0]), int(
        output_shape[1]), int(output_shape[2]), int(input_shape[3]), kernel * kernel])
    output = tf.transpose(output, perm=[0, 1, 2, 4, 3])

    return output

# input should be a tensor with size as [batch_size, caps_num_i, 16] 
開發者ID:www0wwwjs1,項目名稱:Matrix-Capsules-EM-Tensorflow,代碼行數:23,代碼來源:capsnet_em.py

示例6: create_conv_hessian_computing_tf_graph

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import extract_image_patches [as 別名]
def create_conv_hessian_computing_tf_graph(input_shape, layer_kernel, layer_stride):
    """ 
    This function create the TensorFlow graph for computing hessian matrix for fully-connected layer.
    Compared with create_res_hessian_computing_tf_graph, it append extract one for bias term.
    """ 
    input_holder = tf.placeholder(dtype=tf.float32, shape=input_shape)
    patches = tf.extract_image_patches(images = input_holder,
                                       ksizes = [1,layer_kernel, layer_kernel,1],
                                       strides = [1, layer_stride, layer_stride, 1],
                                       rates = [1, 1, 1, 1],
                                       padding = 'SAME')
    print 'Patches shape: %s' %patches.get_shape()
    vect_w_b = tf.concat([patches, tf.ones([tf.shape(patches)[0], \
                tf.shape(patches)[1], tf.shape(patches)[2], 1])], axis=3)
    a = tf.expand_dims(vect_w_b, axis=-1)
    b = tf.expand_dims(vect_w_b, axis=3)
    outprod = tf.multiply(a, b)
    # print 'outprod shape: %s' %outprod.get_shape()
    get_hessian_op = tf.reduce_mean(outprod, axis=[0, 1, 2])
    print 'Hessian shape: %s' % get_hessian_op.get_shape()
    return input_holder, get_hessian_op


# Construct hessian inverse computing graph for Woodbury 
開發者ID:csyhhu,項目名稱:L-OBS,代碼行數:26,代碼來源:hessian_utils.py

示例7: forward

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import extract_image_patches [as 別名]
def forward(self):
        inp = self.inp.out
        s = self.lay.stride
        self.out = tf.extract_image_patches(
            inp, [1,s,s,1], [1,s,s,1], [1,1,1,1], 'VALID') 
開發者ID:AmeyaWagh,項目名稱:Traffic_sign_detection_YOLO,代碼行數:7,代碼來源:convolution.py

示例8: _forward

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import extract_image_patches [as 別名]
def _forward(self, vs):
        if self.local:  # expand input patches and split by filters
            input_local_expanded = tf.extract_image_patches(self.inpt,
                                                            pad_shape(self.ksize),
                                                            self.strides,
                                                            [1, 1, 1, 1],
                                                            padding=self.padding)

            values = []
            for filt in tf.split(axis=3, num_or_size_splits=self.n_filters, value=self.filters):
                channel_i = tf.reduce_sum(tf.multiply(filt, input_local_expanded), 3,
                                          keep_dims=True)
                values.append(channel_i)
            self.output = tf.concat(axis=3, values=values)
        else:  # split by images in batch and map to regular conv2d function
            inpt = tf.expand_dims(self.inpt, 1)

            filt_shape = [-1, self.ksize[0], self.ksize[1], self.n_cin, self.n_filters]
            filt = tf.reshape(self.filters, filt_shape)
            elems = (inpt, filt)
            result = tf.map_fn(lambda x: tf.nn.conv2d(x[0], x[1],
                                                      self.strides,
                                                      self.padding), elems,
                               dtype=tf.float32, infer_shape=False)
            result = tf.squeeze(result, [1])
            result.set_shape(self.inpt.get_shape()[:-1].concatenate([self.n_filters]))
            self.output = result 
開發者ID:akosiorek,項目名稱:hart,代碼行數:29,代碼來源:layer.py

示例9: make_covariance_update_op

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import extract_image_patches [as 別名]
def make_covariance_update_op(self, ema_decay, ema_weight):
    filter_height, filter_width, _, _ = self._filter_shape

    # TODO(b/64144716): there is potential here for a big savings in terms
    # of memory use.
    if self._dilations is None:
      rates = (1, 1, 1, 1)
    else:
      rates = tuple(self._dilations)

    self._patches = []
    for tower in range(self._num_towers):
      with maybe_place_on_device(self._get_data_device(tower)):
        patches = tf.extract_image_patches(
            self._inputs[tower],
            ksizes=[1, filter_height, filter_width, 1],
            strides=self._strides,
            rates=rates,
            padding=self._padding)

        if self._patch_mask is not None:
          assert self._patch_mask.shape == self._filter_shape[0:-1]
          # This should work as intended due to broadcasting.
          patches *= self._patch_mask

        if self._has_bias:
          patches = append_homog(patches)

        self._patches.append(patches)

    return super(ConvDiagonalFactor, self).make_covariance_update_op(
        ema_decay, ema_weight) 
開發者ID:tensorflow,項目名稱:kfac,代碼行數:34,代碼來源:fisher_factors.py

示例10: reorg_layer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import extract_image_patches [as 別名]
def reorg_layer(net, stride=2, name='reorg'):
    with tf.name_scope(name):
        net = tf.extract_image_patches(net,
                                       ksizes=[1, stride, stride, 1],
                                       strides=[1, stride, stride, 1],
                                       rates=[1, 1, 1, 1],
                                       padding='VALID')
    return net 
開發者ID:jinyu121,項目名稱:DW2TF,代碼行數:10,代碼來源:reorg_layer.py

示例11: extract_image_patches

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import extract_image_patches [as 別名]
def extract_image_patches(x, ksizes, ssizes, padding='same',
                          data_format='channels_last'):
    '''
    Extract the patches from an image
    # Parameters
        x : The input image
        ksizes : 2-d tuple with the kernel size
        ssizes : 2-d tuple with the strides size
        padding : 'same' or 'valid'
        data_format : 'channels_last' or 'channels_first'
    # Returns
        The (k_w,k_h) patches extracted
        TF ==> (batch_size,w,h,k_w,k_h,c)
        TH ==> (batch_size,w,h,c,k_w,k_h)
    '''
    kernel = [1, ksizes[0], ksizes[1], 1]
    strides = [1, ssizes[0], ssizes[1], 1]
    padding = _preprocess_padding(padding)
    if data_format == 'channels_first':
        x = KTF.permute_dimensions(x, (0, 2, 3, 1))
    bs_i, w_i, h_i, ch_i = KTF.int_shape(x)
    patches = tf.extract_image_patches(x, kernel, strides, [1, 1, 1, 1],
                                       padding)
    # Reshaping to fit Theano
    bs, w, h, ch = KTF.int_shape(patches)
    patches = tf.reshape(tf.transpose(tf.reshape(patches, [-1, w, h, tf.floordiv(ch, ch_i), ch_i]), [0, 1, 2, 4, 3]),
                         [-1, w, h, ch_i, ksizes[0], ksizes[1]])
    if data_format == 'channels_last':
        patches = KTF.permute_dimensions(patches, [0, 1, 2, 4, 5, 3])
    return patches 
開發者ID:deepakbaby,項目名稱:se_relativisticgan,代碼行數:32,代碼來源:keras_contrib_backend.py

示例12: _reorg

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import extract_image_patches [as 別名]
def _reorg(self, name, inputs, stride, data_format, use_space_to_depth=True, darknet_original=False):
        with tf.name_scope(name):
            # darknet original reorg layer is weird.
            # As default we don't use darknet original reorg.
            # See detail: https://github.com/LeapMind/lmnet/issues/16
            if darknet_original:
                # TODO(wakisaka): You can use only data_format == "NHWC", yet.
                assert data_format == "NHWC"
                input_shape = tf.shape(inputs)
                # channel shape use static.
                b, h, w, c = input_shape[0], input_shape[1], input_shape[2], inputs.get_shape().as_list()[3]
                output_h = h // stride
                output_w = w // stride
                output_c = c * stride * stride
                transpose_tensor = tf.transpose(inputs, [0, 3, 1, 2])
                reshape_tensor = tf.reshape(transpose_tensor, [b, (c // (stride * stride)), h, stride, w, stride])
                transpose_tensor = tf.transpose(reshape_tensor, [0, 3, 5, 1, 2, 4])
                reshape_tensor = tf.reshape(transpose_tensor, [b, output_c, output_h, output_w])
                transpose_tensor = tf.transpose(reshape_tensor, [0, 2, 3, 1])
                outputs = tf.reshape(transpose_tensor, [b, output_h, output_w, output_c])

                return outputs
            else:
                # tf.extract_image_patches() raise error with images_placeholder `None` shape as dynamic image.
                # Github issue: https://github.com/leapmindadmin/lmnet/issues/17
                # Currently, I didn't try to space_to_depth with images_placeholder `None` shape as dynamic image.
                if use_space_to_depth:

                    outputs = tf.space_to_depth(inputs, stride, data_format=data_format)
                    return outputs

                else:
                    # TODO(wakisaka): You can use only data_format == "NHWC", yet.
                    assert data_format == "NHWC"
                    ksize = [1, stride, stride, 1]
                    strides = [1, stride, stride, 1]
                    rates = [1, 1, 1, 1]
                    outputs = tf.extract_image_patches(inputs, ksize, strides, rates, "VALID")

                    return outputs 
開發者ID:blue-oil,項目名稱:blueoil,代碼行數:42,代碼來源:yolo_v2.py

示例13: testGradient

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import extract_image_patches [as 別名]
def testGradient(self):
    # Set graph seed for determinism.
    random_seed = 42
    tf.set_random_seed(random_seed)

    with self.test_session():
      for test_case in self._TEST_CASES:
        np.random.seed(random_seed)
        in_shape = test_case['in_shape']
        in_val = tf.constant(np.random.random(in_shape),
                             dtype=tf.float32)

        for padding in ['VALID', 'SAME']:
          out_val = tf.extract_image_patches(in_val,
                                             test_case['ksizes'],
                                             test_case['strides'],
                                             test_case['rates'],
                                             padding)
          out_shape = out_val.get_shape().as_list()

          err = tf.test.compute_gradient_error(
              in_val, in_shape, out_val, out_shape
          )

          print('extract_image_patches gradient err: %.4e' % err)
          self.assertLess(err, 1e-4) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:28,代碼來源:extract_image_patches_grad_test.py

示例14: im2col

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import extract_image_patches [as 別名]
def im2col(
    x: Union[tf.Tensor, np.ndarray],
    h_filter: int,
    w_filter: int,
    padding: str,
    stride: int,
) -> tf.Tensor:
    """Generic implementation of im2col on tf.Tensors."""

    with tf.name_scope("im2col"):

        # we need NHWC because tf.extract_image_patches expects this
        nhwc_tensor = tf.transpose(x, [0, 2, 3, 1])
        channels = int(nhwc_tensor.shape[3])

        # extract patches
        patch_tensor = tf.extract_image_patches(
            nhwc_tensor,
            ksizes=[1, h_filter, w_filter, 1],
            strides=[1, stride, stride, 1],
            rates=[1, 1, 1, 1],
            padding=padding,
        )

        # change back to NCHW
        patch_tensor_nchw = tf.reshape(
            tf.transpose(patch_tensor, [3, 1, 2, 0]), (h_filter, w_filter, channels, -1)
        )

        # reshape to x_col
        x_col_tensor = tf.reshape(
            tf.transpose(patch_tensor_nchw, [2, 0, 1, 3]),
            (channels * h_filter * w_filter, -1),
        )

        return x_col_tensor 
開發者ID:tf-encrypted,項目名稱:tf-encrypted,代碼行數:38,代碼來源:shared.py

示例15: ternary_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import extract_image_patches [as 別名]
def ternary_loss(im1, im2_warped, mask, max_distance=1):
    patch_size = 2 * max_distance + 1
    with tf.variable_scope('ternary_loss'):
        def _ternary_transform(image):
            intensities = tf.image.rgb_to_grayscale(image) * 255
            #patches = tf.extract_image_patches( # fix rows_in is None
            #    intensities,
            #    ksizes=[1, patch_size, patch_size, 1],
            #    strides=[1, 1, 1, 1],
            #    rates=[1, 1, 1, 1],
            #    padding='SAME')
            out_channels = patch_size * patch_size
            w = np.eye(out_channels).reshape((patch_size, patch_size, 1, out_channels))
            weights =  tf.constant(w, dtype=tf.float32)
            patches = tf.nn.conv2d(intensities, weights, strides=[1, 1, 1, 1], padding='SAME')

            transf = patches - intensities
            transf_norm = transf / tf.sqrt(0.81 + tf.square(transf))
            return transf_norm

        def _hamming_distance(t1, t2):
            dist = tf.square(t1 - t2)
            dist_norm = dist / (0.1 + dist)
            dist_sum = tf.reduce_sum(dist_norm, 3, keepdims=True)
            return dist_sum

        t1 = _ternary_transform(im1)
        t2 = _ternary_transform(im2_warped)
        dist = _hamming_distance(t1, t2)

        transform_mask = create_mask(mask, [[max_distance, max_distance],
                                            [max_distance, max_distance]])
        return charbonnier_loss(dist, mask * transform_mask) 
開發者ID:simonmeister,項目名稱:UnFlow,代碼行數:35,代碼來源:losses.py


注:本文中的tensorflow.extract_image_patches方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。