本文整理匯總了Python中tensorflow.exp方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.exp方法的具體用法?Python tensorflow.exp怎麽用?Python tensorflow.exp使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.exp方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: diag_gaussian_log_likelihood
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import exp [as 別名]
def diag_gaussian_log_likelihood(z, mu=0.0, logvar=0.0):
"""Log-likelihood under a Gaussian distribution with diagonal covariance.
Returns the log-likelihood for each dimension. One should sum the
results for the log-likelihood under the full multidimensional model.
Args:
z: The value to compute the log-likelihood.
mu: The mean of the Gaussian
logvar: The log variance of the Gaussian.
Returns:
The log-likelihood under the Gaussian model.
"""
return -0.5 * (logvar + np.log(2*np.pi) + \
tf.square((z-mu)/tf.exp(0.5*logvar)))
示例2: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import exp [as 別名]
def __init__(self, batch_size, z_size, mean, logvar):
"""Create a diagonal gaussian distribution.
Args:
batch_size: The size of the batch, i.e. 0th dim in 2D tensor of samples.
z_size: The dimension of the distribution, i.e. 1st dim in 2D tensor.
mean: The N-D mean of the distribution.
logvar: The N-D log variance of the diagonal distribution.
"""
size__xz = [None, z_size]
self.mean = mean # bxn already
self.logvar = logvar # bxn already
self.noise = noise = tf.random_normal(tf.shape(logvar))
self.sample = mean + tf.exp(0.5 * logvar) * noise
mean.set_shape(size__xz)
logvar.set_shape(size__xz)
self.sample.set_shape(size__xz)
示例3: gaussian_kernel_matrix
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import exp [as 別名]
def gaussian_kernel_matrix(x, y, sigmas):
r"""Computes a Guassian Radial Basis Kernel between the samples of x and y.
We create a sum of multiple gaussian kernels each having a width sigma_i.
Args:
x: a tensor of shape [num_samples, num_features]
y: a tensor of shape [num_samples, num_features]
sigmas: a tensor of floats which denote the widths of each of the
gaussians in the kernel.
Returns:
A tensor of shape [num_samples{x}, num_samples{y}] with the RBF kernel.
"""
beta = 1. / (2. * (tf.expand_dims(sigmas, 1)))
dist = compute_pairwise_distances(x, y)
s = tf.matmul(beta, tf.reshape(dist, (1, -1)))
return tf.reshape(tf.reduce_sum(tf.exp(-s), 0), tf.shape(dist))
示例4: build_graph
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import exp [as 別名]
def build_graph(self):
#keras.backend.clear_session() # clear session/graph
self.optimizer = keras.optimizers.Adam(lr=self.lr, decay=self.decay)
self.model = Seq2Seq_MVE_subnets_swish(id_embd=True, time_embd=True,
lr=self.lr, decay=self.decay,
num_input_features=self.num_input_features, num_output_features=self.num_output_features,
num_decoder_features=self.num_decoder_features, layers=self.layers,
loss=self.loss, regulariser=self.regulariser)
def _mve_loss(y_true, y_pred):
pred_u = crop(2,0,3)(y_pred)
pred_sig = crop(2,3,6)(y_pred)
print(pred_sig)
#exp_sig = tf.exp(pred_sig) # avoid pred_sig is too small such as zero
#precision = 1./exp_sig
precision = 1./pred_sig
#log_loss= 0.5*tf.log(exp_sig)+0.5*precision*((pred_u-y_true)**2)
log_loss= 0.5*tf.log(pred_sig)+0.5*precision*((pred_u-y_true)**2)
log_loss=tf.reduce_mean(log_loss)
return log_loss
print(self.model.summary())
self.model.compile(optimizer = self.optimizer, loss=_mve_loss)
示例5: minus_plus_std_strategy
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import exp [as 別名]
def minus_plus_std_strategy(self, pred_mean, pred_var, feature_name,\
timestep_to_ensemble=21, alpha=0):
'''
This stratergy aims to calculate linear weighted at specific timestep (timestep_to_ensemble) between prediction and ruitu as formula:
(alpha)*pred_mean + (1-alpha)*ruitu_inputs
pred_mean: (10, 37, 3)
pred_var: (10, 37, 3)
timestep_to_ensemble: int32 (From 0 to 36)
'''
print('Using minus_plus_var_strategy with alpha {}'.format(alpha))
assert 0<=timestep_to_ensemble<=36 , 'Please ensure 0<=timestep_to_ensemble<=36!'
assert -0.3<= alpha <=0.3, '-0.3<= alpha <=0.3!'
assert pred_mean.shape == (10, 37, 3), 'Error! This funtion ONLY works for \
one data sample with shape (10, 37, 3). Any data shape (None, 10, 37, 3) will leads this error!'
pred_std = np.sqrt(np.exp(pred_var))
print('alpha:',alpha)
pred_mean[:,timestep_to_ensemble:,self.obs_and_output_feature_index_map[feature_name]] = \
pred_mean[:,timestep_to_ensemble:,self.obs_and_output_feature_index_map[feature_name]] + \
alpha * pred_std[:,timestep_to_ensemble:,self.obs_and_output_feature_index_map[feature_name]]
return pred_mean
示例6: sample_action
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import exp [as 別名]
def sample_action(self, policy_parameters):
"""
constructs a symbolic operation for stochastically sampling from the policy
distribution
arguments:
policy_parameters
mean, log_std) of a Gaussian distribution over actions
sy_mean: (batch_size, self.ac_dim)
sy_logstd: (batch_size, self.ac_dim)
returns:
sy_sampled_ac:
(batch_size, self.ac_dim)
"""
sy_mean, sy_logstd = policy_parameters
sy_sampled_ac = sy_mean + tf.exp(sy_logstd) * tf.random_normal(tf.shape(sy_mean), 0, 1)
return sy_sampled_ac
示例7: make_encoder
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import exp [as 別名]
def make_encoder(self, state, z_size, scope, n_layers, hid_size):
"""
### PROBLEM 3
### YOUR CODE HERE
args:
state: tf variable
z_size: output dimension of the encoder network
scope: scope name
n_layers: number of layers of the encoder network
hid_size: hidden dimension of encoder network
TODO:
1. z_mean: the output of a neural network that takes the state as input,
has output dimension z_size, n_layers layers, and hidden
dimension hid_size
2. z_logstd: a trainable variable, initialized to 0
shape (z_size,)
Hint: use build_mlp
"""
z_mean = build_mlp(state, z_size, scope, n_layers, hid_size)
z_logstd = tf.get_variable('z_logstd', shape=z_size, trainable=True,
initializer=tf.constant_initializer(value=0.))
return tfp.distributions.MultivariateNormalDiag(loc=z_mean, scale_diag=tf.exp(z_logstd))
示例8: call
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import exp [as 別名]
def call(self, inputs):
mean_and_log_std = self.model(inputs)
mean, log_std = tf.split(mean_and_log_std, num_or_size_splits=2, axis=1)
log_std = tf.clip_by_value(log_std, -20., 2.)
distribution = tfp.distributions.MultivariateNormalDiag(
loc=mean,
scale_diag=tf.exp(log_std)
)
raw_actions = distribution.sample()
if not self._reparameterize:
### Problem 1.3.A
### YOUR CODE HERE
raw_actions = tf.stop_gradient(raw_actions)
log_probs = distribution.log_prob(raw_actions)
log_probs -= self._squash_correction(raw_actions)
### Problem 2.A
### YOUR CODE HERE
self.actions = tf.tanh(raw_actions)
return self.actions, log_probs
示例9: _learning_rate_warmup
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import exp [as 別名]
def _learning_rate_warmup(warmup_steps, warmup_schedule="exp", hparams=None):
"""Learning rate warmup multiplier."""
if not warmup_steps:
return tf.constant(1.)
tf.logging.info("Applying %s learning rate warmup for %d steps",
warmup_schedule, warmup_steps)
warmup_steps = tf.to_float(warmup_steps)
global_step = _global_step(hparams)
if warmup_schedule == "exp":
return tf.exp(tf.log(0.01) / warmup_steps)**(warmup_steps - global_step)
else:
assert warmup_schedule == "linear"
start = tf.constant(0.35)
return ((tf.constant(1.) - start) / warmup_steps) * global_step + start
示例10: bottleneck
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import exp [as 別名]
def bottleneck(self, x): # pylint: disable=arguments-differ
hparams = self.hparams
if hparams.unordered:
return super(AutoencoderOrderedDiscrete, self).bottleneck(x)
noise = hparams.bottleneck_noise
hparams.bottleneck_noise = 0.0 # We'll add noise below.
x, loss = discretization.parametrized_bottleneck(x, hparams)
hparams.bottleneck_noise = noise
if hparams.mode == tf.estimator.ModeKeys.TRAIN:
# We want a number p such that p^bottleneck_bits = 1 - noise.
# So log(p) * bottleneck_bits = log(noise)
log_p = tf.log(1 - float(noise) / 2) / float(hparams.bottleneck_bits)
# Probabilities of flipping are p, p^2, p^3, ..., p^bottleneck_bits.
noise_mask = 1.0 - tf.exp(tf.cumsum(tf.zeros_like(x) + log_p, axis=-1))
# Having the no-noise mask, we can make noise just uniformly at random.
ordered_noise = tf.random_uniform(tf.shape(x))
# We want our noise to be 1s at the start and random {-1, 1} bits later.
ordered_noise = tf.to_float(tf.less(noise_mask, ordered_noise))
# Now we flip the bits of x on the noisy positions (ordered and normal).
x *= 2.0 * ordered_noise - 1
return x, loss
示例11: get_timing_signal
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import exp [as 別名]
def get_timing_signal(length,
min_timescale=1,
max_timescale=1e4,
num_timescales=16):
"""Create Tensor of sinusoids of different frequencies.
Args:
length: Length of the Tensor to create, i.e. Number of steps.
min_timescale: a float
max_timescale: a float
num_timescales: an int
Returns:
Tensor of shape (length, 2*num_timescales)
"""
positions = tf.to_float(tf.range(length))
log_timescale_increment = (
math.log(max_timescale / min_timescale) / (num_timescales - 1))
inv_timescales = min_timescale * tf.exp(
tf.to_float(tf.range(num_timescales)) * -log_timescale_increment)
scaled_time = tf.expand_dims(positions, 1) * tf.expand_dims(inv_timescales, 0)
return tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1)
示例12: vae
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import exp [as 別名]
def vae(x, name, z_size):
"""Simple variational autoencoder without discretization.
Args:
x: Input to the discretization bottleneck.
name: Name for the bottleneck scope.
z_size: Number of bits used to produce discrete code; discrete codes range
from 1 to 2**z_size.
Returns:
Embedding function, latent, loss, mu and log_simga.
"""
with tf.variable_scope(name):
mu = tf.layers.dense(x, z_size, name="mu")
log_sigma = tf.layers.dense(x, z_size, name="log_sigma")
shape = common_layers.shape_list(x)
epsilon = tf.random_normal([shape[0], shape[1], 1, z_size])
z = mu + tf.exp(log_sigma / 2) * epsilon
kl = 0.5 * tf.reduce_mean(
tf.exp(log_sigma) + tf.square(mu) - 1. - log_sigma, axis=-1)
free_bits = z_size // 4
kl_loss = tf.reduce_mean(tf.maximum(kl - free_bits, 0.0))
return z, kl_loss, mu, log_sigma
示例13: expit_tensor
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import exp [as 別名]
def expit_tensor(x):
return 1. / (1. + tf.exp(-x))
示例14: exp2
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import exp [as 別名]
def exp2(x):
with tf.name_scope('Exp2'):
return tf.exp(x * np.float32(np.log(2.0)))
示例15: fprop
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import exp [as 別名]
def fprop(self, x, **kwargs):
alpha = 1.6732632423543772848170429916717
scale = 1.0507009873554804934193349852946
mask = tf.to_float(x >= 0.)
out = mask * x + (1. - mask) * \
(alpha * tf.exp((1. - mask) * x) - alpha)
return scale * out