當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.executing_eagerly方法代碼示例

本文整理匯總了Python中tensorflow.executing_eagerly方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.executing_eagerly方法的具體用法?Python tensorflow.executing_eagerly怎麽用?Python tensorflow.executing_eagerly使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.executing_eagerly方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_params

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import executing_eagerly [as 別名]
def get_params(self):
        """
        Provides access to the model's parameters.
        :return: A list of all Variables defining the model parameters.
        """
        # Catch eager execution and assert function overload.
        try:
            if tf.executing_eagerly():
                raise NotImplementedError("For Eager execution - get_params "
                                          "must be overridden.")
        except AttributeError:
            pass

        # For Graoh based execution
        scope_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
                                       self.scope)
        return scope_vars 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:19,代碼來源:model.py

示例2: test_get_num_columns_of_2d_tensor

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import executing_eagerly [as 別名]
def test_get_num_columns_of_2d_tensor(self):
    """Tests the "get_num_columns_of_2d_tensor" function."""
    self.assertFalse(tf.executing_eagerly())

    # Trying to get the number of columns from a non-tensor should fail.
    with self.assertRaises(TypeError):
      _ = helpers.get_num_columns_of_2d_tensor([[1, 2], [3, 4]])

    # Trying to get the number of columns from a rank-1 tensor should fail.
    tensor = tf.convert_to_tensor([1, 2, 3, 4])
    with self.assertRaises(ValueError):
      _ = helpers.get_num_columns_of_2d_tensor(tensor)

    # Make sure that we successfully get the number of columns.
    tensor = tf.convert_to_tensor([[1, 2, 3]])
    self.assertEqual(3, helpers.get_num_columns_of_2d_tensor(tensor)) 
開發者ID:google-research,項目名稱:tensorflow_constrained_optimization,代碼行數:18,代碼來源:helpers_test.py

示例3: test_run_in_graph_and_eager_modes

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import executing_eagerly [as 別名]
def test_run_in_graph_and_eager_modes(self):
    l = []
    def inc(self, with_brackets):
      del self  # self argument is required by run_in_graph_and_eager_modes.
      mode = "eager" if tf.executing_eagerly() else "graph"
      with_brackets = "with_brackets" if with_brackets else "without_brackets"
      l.append((with_brackets, mode))

    f = test_utils.run_in_graph_and_eager_modes(inc)
    f(self, with_brackets=False)
    f = test_utils.run_in_graph_and_eager_modes()(inc)
    f(self, with_brackets=True)

    self.assertEqual(len(l), 4)
    self.assertEqual(set(l), {
        ("with_brackets", "graph"),
        ("with_brackets", "eager"),
        ("without_brackets", "graph"),
        ("without_brackets", "eager"),
    }) 
開發者ID:yyht,項目名稱:BERT,代碼行數:22,代碼來源:test_utils_test.py

示例4: test_run_in_graph_and_eager_modes_setup_in_same_mode

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import executing_eagerly [as 別名]
def test_run_in_graph_and_eager_modes_setup_in_same_mode(self):
    modes = []
    mode_name = lambda: "eager" if tf.executing_eagerly() else "graph"

    class ExampleTest(tf.test.TestCase):

      def runTest(self):
        pass

      def setUp(self):
        modes.append("setup_" + mode_name())

      @test_utils.run_in_graph_and_eager_modes
      def testBody(self):
        modes.append("run_" + mode_name())

    e = ExampleTest()
    e.setUp()
    e.testBody()

    self.assertEqual(modes[0:2], ["setup_eager", "run_eager"])
    self.assertEqual(modes[2:], ["setup_graph", "run_graph"]) 
開發者ID:yyht,項目名稱:BERT,代碼行數:24,代碼來源:test_utils_test.py

示例5: remove

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import executing_eagerly [as 別名]
def remove(self, x):
    """Remove padding from the given tensor.

    Args:
      x (tf.Tensor): of shape [dim_origin,...]

    Returns:
      a tensor of shape [dim_compressed,...] with dim_compressed <= dim_origin
    """
    with tf.name_scope("pad_reduce/remove"):
      x_shape = x.get_shape().as_list()
      x = tf.gather_nd(
          x,
          indices=self.nonpad_ids,
      )
      if not tf.executing_eagerly():
        # This is a hack but for some reason, gather_nd return a tensor of
        # undefined shape, so the shape is set up manually
        x.set_shape([None] + x_shape[1:])
    return x 
開發者ID:yyht,項目名稱:BERT,代碼行數:22,代碼來源:expert_utils.py

示例6: summarize_video

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import executing_eagerly [as 別名]
def summarize_video(video, prefix, max_outputs=1):
  """Summarize the video using image summaries starting with prefix."""
  video_shape = shape_list(video)
  if len(video_shape) != 5:
    raise ValueError("Assuming videos given as tensors in the format "
                     "[batch, time, height, width, channels] but got one "
                     "of shape: %s" % str(video_shape))
  if tf.executing_eagerly():
    return
  if video.get_shape().as_list()[1] is None:
    tf.summary.image(
        "%s_last_frame" % prefix,
        tf.cast(video[:, -1, :, :, :], tf.uint8),
        max_outputs=max_outputs)
  else:
    for k in range(video_shape[1]):
      tf.summary.image(
          "%s_frame_%d" % (prefix, k),
          tf.cast(video[:, k, :, :, :], tf.uint8),
          max_outputs=max_outputs) 
開發者ID:yyht,項目名稱:BERT,代碼行數:22,代碼來源:common_layers.py

示例7: test_minimize_ill_conditioned_not_raised

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import executing_eagerly [as 別名]
def test_minimize_ill_conditioned_not_raised(self):
    """Optimizing an ill conditioned problem should not raise an exception."""
    if not tf.executing_eagerly():
      return

    def f1(x, y):
      return x * y * 10000.0

    def f2(x, y):
      return x * y * 0.0001

    x = (1.,)
    y = (1.,)
    try:
      self.evaluate(
          levenberg_marquardt.minimize(
              residuals=(f1, f2),
              variables=(x, y),
              max_iterations=1,
              regularizer=1e-20))
    except Exception as e:  # pylint: disable=broad-except
      self.fail("Exception raised: %s" % str(e)) 
開發者ID:tensorflow,項目名稱:graphics,代碼行數:24,代碼來源:levenberg_marquardt_test.py

示例8: test_invalid_variable_inputs

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import executing_eagerly [as 別名]
def test_invalid_variable_inputs(self, error_msg, variable_names,
                                   variable_kinds, variable_values, error_eager,
                                   error_graph_mode):
    height = 1
    width = 1
    empty_shader_code = "#version 460\n void main() { }\n"
    if tf.executing_eagerly():
      error = error_eager
    else:
      error = error_graph_mode
    with self.assertRaisesRegexp(error, error_msg):
      self.evaluate(
          rasterizer.rasterize(
              num_points=0,
              variable_names=variable_names,
              variable_kinds=variable_kinds,
              variable_values=variable_values,
              output_resolution=(width, height),
              vertex_shader=empty_shader_code,
              geometry_shader=empty_shader_code,
              fragment_shader=empty_shader_code)) 
開發者ID:tensorflow,項目名稱:graphics,代碼行數:23,代碼來源:rasterizer_op_test.py

示例9: test_inverse_jacobian_random

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import executing_eagerly [as 別名]
def test_inverse_jacobian_random(self):
    """Test the Jacobian of the inverse function."""
    x_axis_init, x_angle_init = test_helpers.generate_random_test_axis_angle()

    if tf.executing_eagerly():
      # Because axis is returned as is, gradient calculation fails in graph mode
      # but not in eager mode. This is a side effect of having a graph rather
      # than a problem of the function.
      with self.subTest("axis"):
        self.assert_jacobian_is_correct_fn(
            lambda x: axis_angle.inverse(1.0 * x, x_angle_init)[0],
            [x_axis_init])

    with self.subTest("angle"):
      self.assert_jacobian_is_correct_fn(
          lambda x: axis_angle.inverse(x_axis_init, x)[1], [x_angle_init]) 
開發者ID:tensorflow,項目名稱:graphics,代碼行數:18,代碼來源:axis_angle_test.py

示例10: test_dynamic_graph_convolution_keras_layer_exception_not_raised_shapes

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import executing_eagerly [as 別名]
def test_dynamic_graph_convolution_keras_layer_exception_not_raised_shapes(
      self, batch_size, num_vertices, in_channels, out_channels, reduction):
    """Check if the convolution parameters and output have correct shapes."""
    if not tf.executing_eagerly():
      return
    data, neighbors = _dummy_data(batch_size, num_vertices, in_channels)
    layer = gc_layer.DynamicGraphConvolutionKerasLayer(
        num_output_channels=out_channels,
        reduction=reduction)

    try:
      output = layer(inputs=[data, neighbors], sizes=None)
    except Exception as e:  # pylint: disable=broad-except
      self.fail("Exception raised: %s" % str(e))

    self.assertAllEqual((batch_size, num_vertices, out_channels), output.shape) 
開發者ID:tensorflow,項目名稱:graphics,代碼行數:18,代碼來源:graph_convolution_test.py

示例11: test_dynamic_graph_convolution_keras_layer_zero_kernel

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import executing_eagerly [as 別名]
def test_dynamic_graph_convolution_keras_layer_zero_kernel(
      self, batch_size, num_vertices, in_channels, out_channels, reduction):
    """Tests convolution with an all-zeros kernel."""
    if not tf.executing_eagerly():
      return
    data, neighbors = _dummy_data(batch_size, num_vertices, in_channels)
    data = np.random.uniform(size=data.shape).astype(np.float32)
    layer = gc_layer.DynamicGraphConvolutionKerasLayer(
        num_output_channels=out_channels,
        reduction=reduction,
        use_bias=False,
        kernel_initializer=tf.compat.v1.keras.initializers.zeros())

    output = layer(inputs=[data, neighbors], sizes=None)

    self.assertAllEqual(
        output,
        np.zeros(shape=(batch_size, num_vertices, out_channels),
                 dtype=np.float32)) 
開發者ID:tensorflow,項目名稱:graphics,代碼行數:21,代碼來源:graph_convolution_test.py

示例12: test_dynamic_graph_convolution_keras_layer_duplicate_features

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import executing_eagerly [as 別名]
def test_dynamic_graph_convolution_keras_layer_duplicate_features(
      self, num_vertices, in_channels, out_channels):
    """Tests convolution when all vertex features are identical."""
    if not tf.executing_eagerly():
      return
    data = np.random.uniform(size=(1, in_channels))
    data = np.tile(data, (num_vertices, 1))
    # Results should be independent of 'neighbors'.
    neighbors = np.maximum(np.random.randint(
        0, 2, size=(num_vertices, num_vertices)), np.eye(num_vertices))
    neighbors = _dense_to_sparse(neighbors)
    layer = gc_layer.DynamicGraphConvolutionKerasLayer(
        num_output_channels=out_channels,
        reduction="max")

    output = layer(inputs=[data, neighbors], sizes=None)

    output_tile = tf.tile(output[:1, :], (num_vertices, 1))

    self.assertAllEqual(output, output_tile) 
開發者ID:tensorflow,項目名稱:graphics,代碼行數:22,代碼來源:graph_convolution_test.py

示例13: assert_jacobian_is_correct

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import executing_eagerly [as 別名]
def assert_jacobian_is_correct(self, x, x_init, y, atol=1e-6, delta=1e-6):
    """Tests that the gradient error of y=f(x) is small.

    Args:
      x: A tensor.
      x_init: A numpy array containing the values at which to estimate the
        gradients of y.
      y: A tensor.
      atol: Maximum absolute tolerance in gradient error.
      delta: The amount of perturbation.
    """
    warnings.warn((
        "assert_jacobian_is_correct is deprecated and might get "
        "removed in a future version please use assert_jacobian_is_correct_fn"),
                  DeprecationWarning)
    if tf.executing_eagerly():
      self.skipTest(reason="Graph mode only test")
    max_error, _, _ = self._compute_gradient_error(x, y, x_init, delta)
    self.assertLessEqual(max_error, atol) 
開發者ID:tensorflow,項目名稱:graphics,代碼行數:21,代碼來源:test_case.py

示例14: assert_jacobian_is_correct_fn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import executing_eagerly [as 別名]
def assert_jacobian_is_correct_fn(self, f, x, atol=1e-6, delta=1e-6):
    """Tests that the gradient error of y=f(x) is small.

    Args:
      f: the function.
      x: A list of arguments for the function
      atol: Maximum absolute tolerance in gradient error.
      delta: The amount of perturbation.
    """
    # pylint: disable=no-value-for-parameter
    if tf.executing_eagerly():
      max_error = _max_error(*tf.test.compute_gradient(f, x, delta))
    else:
      with self.cached_session():
        max_error = _max_error(*tf.test.compute_gradient(f, x, delta))
    # pylint: enable=no-value-for-parameter
    self.assertLessEqual(max_error, atol) 
開發者ID:tensorflow,項目名稱:graphics,代碼行數:19,代碼來源:test_case.py

示例15: assert_jacobian_is_finite_fn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import executing_eagerly [as 別名]
def assert_jacobian_is_finite_fn(self, f, x):
    """Tests that the Jacobian only contains valid values.

    The analytical gradients and numerical ones are expected to differ at points
    where f(x) is not smooth. This function can be used to check that the
    analytical gradient is not 'NaN' nor 'Inf'.

    Args:
      f: the function.
      x: A list of arguments for the function
    """
    if tf.executing_eagerly():
      theoretical_gradient, _ = tf.compat.v2.test.compute_gradient(f, x)
    else:
      with self.cached_session():
        theoretical_gradient, _ = tf.compat.v2.test.compute_gradient(f, x)
    self.assertNotIn(
        True, [
            np.isnan(element).any() or np.isinf(element).any()
            for element in theoretical_gradient
        ],
        msg="nan or inf elements found in theoretical jacobian.") 
開發者ID:tensorflow,項目名稱:graphics,代碼行數:24,代碼來源:test_case.py


注:本文中的tensorflow.executing_eagerly方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。