本文整理匯總了Python中tensorflow.examples.tutorials.mnist.mnist.training方法的典型用法代碼示例。如果您正苦於以下問題:Python mnist.training方法的具體用法?Python mnist.training怎麽用?Python mnist.training使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.examples.tutorials.mnist.mnist
的用法示例。
在下文中一共展示了mnist.training方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
# 需要導入模塊: from tensorflow.examples.tutorials.mnist import mnist [as 別名]
# 或者: from tensorflow.examples.tutorials.mnist.mnist import training [as 別名]
def main(unused_argv):
if FLAGS.log_dir is None or FLAGS.log_dir == "":
raise ValueError("Must specify an explicit `log_dir`")
if FLAGS.data_dir is None or FLAGS.data_dir == "":
raise ValueError("Must specify an explicit `data_dir`")
device, target = device_and_target()
with tf.device(device):
images = tf.placeholder(tf.float32, [None, 784], name='image_input')
labels = tf.placeholder(tf.float32, [None], name='label_input')
data = read_data_sets(FLAGS.data_dir,
one_hot=False,
fake_data=False)
logits = mnist.inference(images, FLAGS.hidden1, FLAGS.hidden2)
loss = mnist.loss(logits, labels)
loss = tf.Print(loss, [loss], message="Loss = ")
train_op = mnist.training(loss, FLAGS.learning_rate)
with tf.train.MonitoredTrainingSession(
master=target,
is_chief=(FLAGS.task_index == 0),
checkpoint_dir=FLAGS.log_dir) as sess:
while not sess.should_stop():
xs, ys = data.train.next_batch(FLAGS.batch_size, fake_data=False)
sess.run(train_op, feed_dict={images:xs, labels:ys})
示例2: fill_feed_dict
# 需要導入模塊: from tensorflow.examples.tutorials.mnist import mnist [as 別名]
# 或者: from tensorflow.examples.tutorials.mnist.mnist import training [as 別名]
def fill_feed_dict(data_set, images_pl, labels_pl):
"""Fills the feed_dict for training the given step.
A feed_dict takes the form of:
feed_dict = {
<placeholder>: <tensor of values to be passed for placeholder>,
....
}
Args:
data_set: The set of images and labels, from input_data.read_data_sets()
images_pl: The images placeholder, from placeholder_inputs().
labels_pl: The labels placeholder, from placeholder_inputs().
Returns:
feed_dict: The feed dictionary mapping from placeholders to values.
"""
# Create the feed_dict for the placeholders filled with the next
# `batch size ` examples.
images_feed, labels_feed = data_set.next_batch(FLAGS.batch_size,
FLAGS.fake_data)
feed_dict = {
images_pl: images_feed,
labels_pl: labels_feed,
}
return feed_dict
示例3: fill_feed_dict
# 需要導入模塊: from tensorflow.examples.tutorials.mnist import mnist [as 別名]
# 或者: from tensorflow.examples.tutorials.mnist.mnist import training [as 別名]
def fill_feed_dict(data_set, images_pl, labels_pl, batch_size):
"""Fills the feed_dict for training the given step.
Args:
data_set: The set of images and labels, from input_data.read_data_sets()
images_pl: The images placeholder, from placeholder_inputs().
labels_pl: The labels placeholder, from placeholder_inputs().
batch_size: Batch size of data to feed.
Returns:
feed_dict: The feed dictionary mapping from placeholders to values.
"""
# Create the feed_dict for the placeholders filled with the next
# `batch size ` examples.
images_feed, labels_feed = data_set.next_batch(batch_size, FLAGS.fake_data)
feed_dict = {
images_pl: images_feed,
labels_pl: labels_feed,
}
return feed_dict
示例4: fill_feed_dict
# 需要導入模塊: from tensorflow.examples.tutorials.mnist import mnist [as 別名]
# 或者: from tensorflow.examples.tutorials.mnist.mnist import training [as 別名]
def fill_feed_dict(data_set, images_pl, labels_pl):
"""Fills the feed_dict for training the given step.
A feed_dict takes the form of:
feed_dict = {
<placeholder>: <tensor of values to be passed for placeholder>,
....
}
Args:
data_set: The set of images and labels, from input_data.read_data_sets()
images_pl: The images placeholder, from placeholder_inputs().
labels_pl: The labels placeholder, from placeholder_inputs().
Returns:
feed_dict: The feed dictionary mapping from placeholders to values.
"""
# Create the feed_dict for the placeholders filled with the next
# `batch size` examples.
images_feed, labels_feed = data_set.next_batch(FLAGS.batch_size,
FLAGS.fake_data)
feed_dict = {
images_pl: images_feed,
labels_pl: labels_feed,
}
return feed_dict
示例5: fill_feed_dict
# 需要導入模塊: from tensorflow.examples.tutorials.mnist import mnist [as 別名]
# 或者: from tensorflow.examples.tutorials.mnist.mnist import training [as 別名]
def fill_feed_dict(data_set, images_pl, labels_pl):
"""Fills the feed_dict for training the given step.
A feed_dict takes the form of:
feed_dict = {
<placeholder>: <tensor of values to be passed for placeholder>,
....
}
Args:
data_set: The set of images and labels, from input_data.read_data_sets()
images_pl: The images placeholder, from placeholder_inputs().
labels_pl: The labels placeholder, from placeholder_inputs().
Returns:
feed_dict: The feed dictionary mapping from placeholders to values.
"""
# Create the feed_dict for the placeholders filled with the next
# `batch size` examples.
_, images_feed, labels_feed = data_set.next_batch(FLAGS.batch_size,
FLAGS.fake_data)
feed_dict = {
images_pl: images_feed,
labels_pl: labels_feed,
}
return feed_dict
示例6: inputs
# 需要導入模塊: from tensorflow.examples.tutorials.mnist import mnist [as 別名]
# 或者: from tensorflow.examples.tutorials.mnist.mnist import training [as 別名]
def inputs(train, batch_size, num_epochs):
"""Reads input data num_epochs times.
Args:
train: Selects between the training (True) and validation (False) data.
batch_size: Number of examples per returned batch.
num_epochs: Number of times to read the input data, or 0/None to
train forever.
Returns:
A tuple (images, labels), where:
* images is a float tensor with shape [batch_size, mnist.IMAGE_PIXELS]
in the range [-0.5, 0.5].
* labels is an int32 tensor with shape [batch_size] with the true label,
a number in the range [0, mnist.NUM_CLASSES).
Note that an tf.train.QueueRunner is added to the graph, which
must be run using e.g. tf.train.start_queue_runners().
"""
if not num_epochs: num_epochs = None
filename = os.path.join(FLAGS.train_dir,
TRAIN_FILE if train else VALIDATION_FILE)
with tf.name_scope('input'):
filename_queue = tf.train.string_input_producer(
[filename], num_epochs=num_epochs)
# Even when reading in multiple threads, share the filename
# queue.
image, label = read_and_decode(filename_queue)
# Shuffle the examples and collect them into batch_size batches.
# (Internally uses a RandomShuffleQueue.)
# We run this in two threads to avoid being a bottleneck.
images, sparse_labels = tf.train.shuffle_batch(
[image, label], batch_size=batch_size, num_threads=2,
capacity=1000 + 3 * batch_size,
# Ensures a minimum amount of shuffling of examples.
min_after_dequeue=1000)
return images, sparse_labels
示例7: device_and_target
# 需要導入模塊: from tensorflow.examples.tutorials.mnist import mnist [as 別名]
# 或者: from tensorflow.examples.tutorials.mnist.mnist import training [as 別名]
def device_and_target():
# If FLAGS.job_name is not set, we're running single-machine TensorFlow.
# Don't set a device.
if FLAGS.job_name is None:
print("Running single-machine training")
return (None, "")
# Otherwise we're running distributed TensorFlow.
print("%s.%d -- Running distributed training"%(FLAGS.job_name, FLAGS.task_index))
if FLAGS.task_index is None or FLAGS.task_index == "":
raise ValueError("Must specify an explicit `task_index`")
if FLAGS.ps_hosts is None or FLAGS.ps_hosts == "":
raise ValueError("Must specify an explicit `ps_hosts`")
if FLAGS.worker_hosts is None or FLAGS.worker_hosts == "":
raise ValueError("Must specify an explicit `worker_hosts`")
cluster_spec = tf.train.ClusterSpec({
"ps": FLAGS.ps_hosts.split(","),
"worker": FLAGS.worker_hosts.split(","),
})
server = tf.train.Server(
cluster_spec, job_name=FLAGS.job_name, task_index=FLAGS.task_index)
if FLAGS.job_name == "ps":
server.join()
worker_device = "/job:worker/task:{}".format(FLAGS.task_index)
# The device setter will automatically place Variables ops on separate
# parameter servers (ps). The non-Variable ops will be placed on the workers.
return (
tf.train.replica_device_setter(
worker_device=worker_device,
cluster=cluster_spec),
server.target,
)
示例8: inputs
# 需要導入模塊: from tensorflow.examples.tutorials.mnist import mnist [as 別名]
# 或者: from tensorflow.examples.tutorials.mnist.mnist import training [as 別名]
def inputs(train, batch_size, num_epochs):
"""Reads input data num_epochs times.
Args:
train: Selects between the training (True) and validation (False) data.
batch_size: Number of examples per returned batch.
num_epochs: Number of times to read the input data, or 0/None to
train forever.
Returns:
A tuple (images, labels), where:
* images is a float tensor with shape [batch_size, mnist.IMAGE_PIXELS]
in the range [-0.5, 0.5].
* labels is an int32 tensor with shape [batch_size] with the true label,
a number in the range [0, mnist.NUM_CLASSES).
Note that an tf.train.QueueRunner is added to the graph, which
must be run using e.g. tf.train.start_queue_runners().
"""
if not num_epochs: num_epochs = None
filename = os.path.join(FLAGS.train_dir,
TRAIN_FILE if train else VALIDATION_FILE)
with tf.name_scope('input'):
filename_queue = tf.train.string_input_producer(
[filename], num_epochs=num_epochs)
# Even when reading in multiple threads, share the filename
# queue.
image, label = read_and_decode(filename_queue)
# Shuffle the examples and collect them into batch_size batches.
# (Internally uses a RandomShuffleQueue.)
# We run this in two threads to avoid being a bottleneck.
images, sparse_labels = tf.train.batch(
[image, label], batch_size=batch_size, num_threads=10, capacity=60000)
return images, sparse_labels