當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.estimator方法代碼示例

本文整理匯總了Python中tensorflow.estimator方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.estimator方法的具體用法?Python tensorflow.estimator怎麽用?Python tensorflow.estimator使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.estimator方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _gen_monitored_train_and_evaluate

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import estimator [as 別名]
def _gen_monitored_train_and_evaluate(client: skein.ApplicationClient):
    task = cluster.get_task()

    def train_and_evaluate(
            estimator: tf.estimator,
            train_spec: tf.estimator.TrainSpec,
            eval_spec: tf.estimator.EvalSpec):
        event.broadcast_train_eval_start_timer(client, task)
        tf.estimator.train_and_evaluate(
            estimator,
            train_spec,
            eval_spec
        )
        event.broadcast_train_eval_stop_timer(client, task)

    return train_and_evaluate 
開發者ID:criteo,項目名稱:tf-yarn,代碼行數:18,代碼來源:_task_commons.py

示例2: _shutdown_container

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import estimator [as 別名]
def _shutdown_container(
    client: skein.ApplicationClient,
    cluster_tasks: List[str],
    run_config: tf.estimator.RunConfig,
    thread: Optional[MonitoredThread]
) -> None:
    # Wait for all tasks connected to this one. The set of tasks to
    # wait for contains all tasks in the cluster, or the ones
    # matching ``device_filters`` if set. The implementation assumes
    # that ``device_filers`` are symmetric.
    exception = thread.exception if thread is not None and isinstance(thread, MonitoredThread) \
        else None
    task = cluster.get_task()
    event.stop_event(client, task, exception)
    wait_for_connected_tasks(
        client,
        cluster_tasks,
        getattr(run_config.session_config, "device_filters", []))

    event.broadcast_container_stop_time(client, task)

    if exception is not None:
        raise exception from None 
開發者ID:criteo,項目名稱:tf-yarn,代碼行數:25,代碼來源:_task_commons.py

示例3: initialize_graph

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import estimator [as 別名]
def initialize_graph(self):
        if not self.inference:
            with self.sess.graph.as_default():
                features, labels = get_inference_input()
                estimator_spec = model_fn(features, labels,
                                        tf.estimator.ModeKeys.PREDICT, self.hparams)
                self.inference_input = features
                self.inference_output = estimator_spec.predictions
                if self.save_file is not None:
                    self.initialize_weights(self.save_file)
                else:
                    self.sess.run(tf.global_variables_initializer())
        else:
            input_name = "pos_tensor"
            input_tensors = self.graph.get_tensor_by_name("import/" + input_name + ":0")
            self.inference_input = input_tensors
            output_names = ["policy_output", "value_output"]
            output_tensors = []
            for name in output_names:
                output_tensors.append(self.graph.get_tensor_by_name("import/" + name + ":0"))
            self.inference_output = output_tensors 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:23,代碼來源:dual_net.py

示例4: export_model

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import estimator [as 別名]
def export_model(working_dir, model_path):
    """Take the latest checkpoint and export it to model_path for selfplay.

    Assumes that all relevant model files are prefixed by the same name.
    (For example, foo.index, foo.meta and foo.data-00000-of-00001).

    Args:
        working_dir: The directory where tf.estimator keeps its checkpoints
        model_path: The path (can be a gs:// path) to export model to
    """
    estimator = tf.estimator.Estimator(model_fn, model_dir=working_dir,
                                       params='ignored')
    latest_checkpoint = estimator.latest_checkpoint()
    all_checkpoint_files = tf.gfile.Glob(latest_checkpoint + '*')
    for filename in all_checkpoint_files:
        suffix = filename.partition(latest_checkpoint)[2]
        destination_path = model_path + suffix
        print("Copying {} to {}".format(filename, destination_path))
        tf.gfile.Copy(filename, destination_path) 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:21,代碼來源:dual_net.py

示例5: bootstrap

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import estimator [as 別名]
def bootstrap(
        working_dir: 'tf.estimator working directory. If not set, defaults to a random tmp dir'=None,
        model_save_path: 'Where to export the first bootstrapped generation'=None):
    qmeas.start_time('bootstrap')
    if working_dir is None:
        with tempfile.TemporaryDirectory() as working_dir:
            _ensure_dir_exists(working_dir)
            _ensure_dir_exists(os.path.dirname(model_save_path))
            dual_net.bootstrap(working_dir)
            dual_net.export_model(working_dir, model_save_path)
    else:
        _ensure_dir_exists(working_dir)
        _ensure_dir_exists(os.path.dirname(model_save_path))
        dual_net.bootstrap(working_dir)
        dual_net.export_model(working_dir, model_save_path)
    qmeas.stop_time('bootstrap') 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:18,代碼來源:main.py

示例6: validate

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import estimator [as 別名]
def validate(
        working_dir: 'tf.estimator working directory',
        *tf_record_dirs: 'Directories where holdout data are',
        checkpoint_name: 'Which checkpoint to evaluate (None=latest)'=None,
        validate_name: 'Name for validation set (i.e., selfplay or human)'=None):
    qmeas.start_time('validate')
    tf_records = []
    with timer("Building lists of holdout files"):
        for record_dir in tf_record_dirs:
            tf_records.extend(gfile.Glob(os.path.join(record_dir, '*.zz')))

    first_record = os.path.basename(tf_records[0])
    last_record = os.path.basename(tf_records[-1])
    with timer("Validating from {} to {}".format(first_record, last_record)):
        dual_net.validate(
            working_dir, tf_records, checkpoint_name=checkpoint_name,
            name=validate_name)
    qmeas.stop_time('validate') 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:20,代碼來源:main.py

示例7: normalize_weights

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import estimator [as 別名]
def normalize_weights(self, labels, weights):
    """Normalizes weights needed for tf.estimator (not tf.keras).

    This is needed for `tf.estimator` given that the reduction may be
    `SUM_OVER_NONZERO_WEIGHTS`. This function is not needed after we migrate
    from the deprecated reduction to `SUM` or `SUM_OVER_BATCH_SIZE`.

    Args:
      labels: A `Tensor` of shape [batch_size, list_size] representing graded
        relevance.
      weights: A scalar, a `Tensor` with shape [batch_size, 1] for list-wise
        weights, or a `Tensor` with shape [batch_size, list_size] for item-wise
        weights.

    Returns:
      The normalized weights.
    """
    del labels
    return 1.0 if weights is None else weights 
開發者ID:tensorflow,項目名稱:ranking,代碼行數:21,代碼來源:losses_impl.py

示例8: compute

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import estimator [as 別名]
def compute(self, labels, logits, weights, reduction):
    """Computes the reduced loss for tf.estimator (not tf.keras).

    Note that this function is not compatible with keras.

    Args:
      labels: A `Tensor` of the same shape as `logits` representing graded
        relevance.
      logits: A `Tensor` with shape [batch_size, list_size]. Each value is the
        ranking score of the corresponding item.
      weights: A scalar, a `Tensor` with shape [batch_size, 1] for list-wise
        weights, or a `Tensor` with shape [batch_size, list_size] for item-wise
        weights.
      reduction: One of `tf.losses.Reduction` except `NONE`. Describes how to
        reduce training loss over batch.

    Returns:
      Reduced loss for training and eval.
    """
    losses, loss_weights = self.compute_unreduced_loss(labels, logits)
    weights = tf.multiply(self.normalize_weights(labels, weights), loss_weights)
    return tf.compat.v1.losses.compute_weighted_loss(
        losses, weights, reduction=reduction) 
開發者ID:tensorflow,項目名稱:ranking,代碼行數:25,代碼來源:losses_impl.py

示例9: eval_metric

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import estimator [as 別名]
def eval_metric(self, labels, logits, weights):
    """Computes the eval metric for the loss in tf.estimator (not tf.keras).

    Note that this function is not compatible with keras.

    Args:
      labels: A `Tensor` of the same shape as `logits` representing graded
        relevance.
      logits: A `Tensor` with shape [batch_size, list_size]. Each value is the
        ranking score of the corresponding item.
      weights: A scalar, a `Tensor` with shape [batch_size, 1] for list-wise
        weights, or a `Tensor` with shape [batch_size, list_size] for item-wise
        weights.

    Returns:
      A metric op.
    """
    losses, loss_weights = self.compute_unreduced_loss(labels, logits)
    weights = tf.multiply(self.normalize_weights(labels, weights), loss_weights)
    return tf.compat.v1.metrics.mean(losses, weights) 
開發者ID:tensorflow,項目名稱:ranking,代碼行數:22,代碼來源:losses_impl.py

示例10: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import estimator [as 別名]
def __init__(self, transform_fn=None):
    """Constructor for the common components of all ranking models.

    Args:
      transform_fn: (function) A user-provided function that transforms raw
        features into dense Tensors with the following signature:
        * Args:
          `features`: A dict of Tensors or SparseTensors that contains the raw
            features from an input_fn.
          `mode`: Optional. See estimator `ModeKeys`.
          `params`: Optional. See tf.estimator model_fn. Hyperparameters for the
            model.
        * Returns:
          `context_features`: A dict of `Tensor`s with shape [batch_size, ...]
          `example_features`: A dict of `Tensor`s with shape [batch_size,
            list_size, ...]
    """
    if transform_fn is None:
      self._transform_fn = feature.make_identity_transform_fn({})
    else:
      self._transform_fn = transform_fn 
開發者ID:tensorflow,項目名稱:ranking,代碼行數:23,代碼來源:model.py

示例11: dnn_classifier

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import estimator [as 別名]
def dnn_classifier(self):
        """Builds the DNN model(classifier)
        with the parameters parsed from the user input
        Returns : tf.estimator object, Canned estimator of DNN Classifier
        """
        return tf.estimator.DNNClassifier(
            config=self.config,
            feature_columns=self.deep_columns,
            hidden_units=self.hidden_units,
            n_classes=self.n_classes,
            weight_column=self.weight_column,
            label_vocabulary=self.label_vocabulary,
            optimizer=self.dnn_optimizer,
            activation_fn=self.activation_fn,
            dropout=self.dropout,
            input_layer_partitioner=self.input_layer_partitioner,
            warm_start_from=self.warm_start_from,
            loss_reduction=self.loss_reduction
        ) 
開發者ID:GoogleCloudPlatform,項目名稱:professional-services,代碼行數:21,代碼來源:models.py

示例12: dnn_regressor

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import estimator [as 別名]
def dnn_regressor(self):
        """Builds the DNN model(regressor)
        with the parameters parsed from the user input
        Returns : tf.estimator object, Canned estimator of DNN Regressor
        """
        return tf.estimator.DNNRegressor(
            config=self.config,
            feature_columns=self.deep_columns,
            hidden_units=self.hidden_units,
            label_dimension=self.label_dimension,
            weight_column=self.weight_column,
            optimizer=self.dnn_optimizer,
            activation_fn=self.activation_fn,
            dropout=self.dropout,
            input_layer_partitioner=self.input_layer_partitioner,
            warm_start_from=self.warm_start_from,
            loss_reduction=self.loss_reduction
        ) 
開發者ID:GoogleCloudPlatform,項目名稱:professional-services,代碼行數:20,代碼來源:models.py

示例13: combined_classifier

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import estimator [as 別名]
def combined_classifier(self):
        """Builds a combined DNN and linear classifier parsed from user input.
        Returns : tf.estimator object, Canned estimator of Combined Classifier
        """
        return tf.estimator.DNNLinearCombinedClassifier(
            config=self.config,
            linear_feature_columns=self.feature_columns,
            linear_optimizer=self.linear_optimizer,
            dnn_feature_columns=self.deep_columns,
            dnn_hidden_units=self.hidden_units,
            dnn_activation_fn=self.activation_fn,
            dnn_dropout=self.dropout,
            n_classes=self.n_classes,
            weight_column=self.weight_column,
            label_vocabulary=self.label_vocabulary,
            input_layer_partitioner=self.input_layer_partitioner,
            warm_start_from=self.warm_start_from,
            loss_reduction=self.loss_reduction,
            batch_norm=self.batch_norm,
            linear_sparse_combiner=self.linear_sparse_combiner
        ) 
開發者ID:GoogleCloudPlatform,項目名稱:professional-services,代碼行數:23,代碼來源:models.py

示例14: polynomial_regressor

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import estimator [as 別名]
def polynomial_regressor(self):
        """Builds the polynomial regression model
        with the parameters parsed from the user input
        Returns: A Custom Estimator of Polynomial regression
        """
        return tf.estimator.Estimator(
            model_fn=self.poly_regression_model_fn,
            model_dir=self.model_dir, config=self.config,
            params={
                'batch_size': self.batch_size,
                'polynomial_degree': self.polynomial_degree,
                'feature_names': self.feature_names,
                'optimizer': self.optimizer
            },
            warm_start_from=self.warm_start_from
        ) 
開發者ID:GoogleCloudPlatform,項目名稱:professional-services,代碼行數:18,代碼來源:models.py

示例15: polynomial_classifier

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import estimator [as 別名]
def polynomial_classifier(self):
        """Builds the logistic classification model
        with the parameters parsed from the user input
        Returns: A Custom Estimator of Polynomial classifier
        """
        return tf.estimator.Estimator(
            model_fn=self.poly_classification_model_fn,
            model_dir=self.model_dir,
            config=self.config,
            params={
                'degree': self.polynomial_degree,
                'feature_names': self.feature_names,
                'batch_size': self.batch_size,
                'optimizer': self.optimizer
            }
        ) 
開發者ID:GoogleCloudPlatform,項目名稱:professional-services,代碼行數:18,代碼來源:models.py


注:本文中的tensorflow.estimator方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。