本文整理匯總了Python中tensorflow.erf方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.erf方法的具體用法?Python tensorflow.erf怎麽用?Python tensorflow.erf使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.erf方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _normal_distribution_cdf
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import erf [as 別名]
def _normal_distribution_cdf(x, stddev):
"""Evaluates the CDF of the normal distribution.
Normal distribution with mean 0 and standard deviation stddev,
evaluated at x=x.
input and output `Tensor`s have matching shapes.
Args:
x: a `Tensor`
stddev: a `Tensor` with the same shape as `x`.
Returns:
a `Tensor` with the same shape as `x`.
"""
return 0.5 * (1.0 + tf.erf(x / (math.sqrt(2) * stddev + 1e-20)))
示例2: fully_variance_dense
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import erf [as 別名]
def fully_variance_dense(input_tensor, num_inputs, num_outputs, mean_initializer, name, stochastic=True, reuse=False):
with tf.variable_scope(name) as scope:
W = tf.get_variable('W', [num_inputs, num_outputs], initializer=mean_initializer, dtype=tf.float32,
trainable=False)
log_sigma2 = tf.get_variable('log_sigma2', [num_inputs, num_outputs],
initializer=tf.constant_initializer(-3.0),
dtype=tf.float32, trainable=True)
mu = tf.matmul(input_tensor, W)
si = tf.sqrt(tf.matmul(input_tensor * input_tensor, tf.exp(log_sigma2)) + 1e-16)
output = mu
if stochastic:
output += tf.random_normal(mu.shape, mean=0, stddev=1) * si
# summaries
if not reuse:
error = 0.5*(1.0+tf.erf((-mu)/tf.sqrt(2.0)/si))
tf.summary.scalar('error', tf.reduce_sum(error))
#tf.summary.histogram('log_sigma2', log_sigma2)
return output
示例3: get_activation
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import erf [as 別名]
def get_activation(activation_fun: Optional[str]):
if activation_fun is None:
return None
activation_fun = activation_fun.lower()
if activation_fun == 'linear':
return None
if activation_fun == 'tanh':
return tf.tanh
if activation_fun == 'relu':
return tf.nn.relu
if activation_fun == 'leaky_relu':
return tf.nn.leaky_relu
if activation_fun == 'elu':
return tf.nn.elu
if activation_fun == 'selu':
return tf.nn.selu
if activation_fun == 'gelu':
def gelu(input_tensor):
cdf = 0.5 * (1.0 + tf.erf(input_tensor / tf.sqrt(2.0)))
return input_tensor * cdf
return gelu
else:
raise ValueError("Unknown activation function '%s'!" % activation_fun)
示例4: _NormalDistributionCDF
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import erf [as 別名]
def _NormalDistributionCDF(x, stddev):
"""Evaluates the CDF of the normal distribution.
Normal distribution with mean 0 and standard deviation stddev,
evaluated at x=x.
input and output `Tensor`s have matching shapes.
Args:
x: a `Tensor`
stddev: a `Tensor` with the same shape as `x`.
Returns:
a `Tensor` with the same shape as `x`.
"""
return 0.5 * (1.0 + tf.erf(x / (math.sqrt(2) * stddev + 1e-20)))
示例5: gelu
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import erf [as 別名]
def gelu(inputs, scope='gelu', reuse=None):
"""Gaussian Error Linear Unit.
This is a smoother version of the ReLU.
Paper: https://arxiv.org/abs/1606.08415
Args:
- inputs: float Tensor
- scope: scope name
- reuse: whether to reuse
Returns:
`inputs` with the gelu activation applied.
"""
with tf.variable_scope(scope, reuse=reuse):
alpha = 0.5 * (1.0 + tf.erf(inputs / tf.sqrt(2.0)))
return inputs * alpha
示例6: get_activation
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import erf [as 別名]
def get_activation(activation_fun: Optional[str]) -> Optional[Callable]:
if activation_fun is None:
return None
activation_fun = activation_fun.lower()
if activation_fun == 'linear':
return None
if activation_fun == 'tanh':
return tf.tanh
if activation_fun == 'relu':
return tf.nn.relu
if activation_fun == 'leaky_relu':
return tf.nn.leaky_relu
if activation_fun == 'elu':
return tf.nn.elu
if activation_fun == 'selu':
return tf.nn.selu
if activation_fun == 'gelu':
def gelu(input_tensor):
cdf = 0.5 * (1.0 + tf.erf(input_tensor / tf.sqrt(2.0)))
return input_tensor * cdf
return gelu
else:
raise ValueError("Unknown activation function '%s'!" % activation_fun)
示例7: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import erf [as 別名]
def __init__(self, config):
self.config = config
self.n_steps = 10
self.n_input, self.n_hidden = 4, 2
self.state = tf.Variable(tf.random_normal(shape=[1, 4]))
self.lstm = tf.contrib.rnn.BasicLSTMCell(self.n_hidden, forget_bias=1.0, state_is_tuple=False)
self.Wc, self.bc = self.init_controller_vars()
self.Wv, self.bv = self.init_value_vars()
# Other functions used in the paper
# self.full_list_unary = {1:lambda x:x ,2:lambda x: -x, 3: tf.abs, 4:lambda x : tf.pow(x,2),5:lambda x : tf.pow(x,3),
# 6:tf.sqrt,7:lambda x: tf.Variable(tf.truncated_normal([1], stddev=0.08))*x,
# 8:lambda x : x + tf.Variable(tf.truncated_normal([1], stddev=0.08)),9:lambda x: tf.log(tf.abs(x)+10e-8),
# 10:tf.exp,11:tf.sin,12:tf.sinh,13:tf.cosh,14:tf.tanh,15:tf.asinh,16:tf.atan,17:lambda x: tf.sin(x)/x,
# 18:lambda x : tf.maximum(x,0),19:lambda x : tf.minimum(x,0),20:tf.sigmoid,21:lambda x:tf.log(1+tf.exp(x)),
# 22:lambda x:tf.exp(-tf.pow(x,2)),23:tf.erf,24:lambda x: tf.Variable(tf.truncated_normal([1], stddev=0.08))}
#
# self.full_list_binary = {1:lambda x,y: x+y,2:lambda x,y:x*y,3:lambda x,y:x-y,4:lambda x,y:x/(y+10e-8),
# 5:lambda x,y:tf.maximum(x,y),6:lambda x,y: tf.sigmoid(x)*y,7:lambda x,y:tf.exp(-tf.Variable(tf.truncated_normal([1], stddev=0.08))*tf.pow(x-y,2)),
# 8:lambda x,y:tf.exp(-tf.Variable(tf.truncated_normal([1], stddev=0.08))*tf.abs(x-y)),
# 9:lambda x,y: tf.Variable(tf.truncated_normal([1], stddev=0.08))*x + (1-tf.Variable(tf.truncated_normal([1], stddev=0.08)))*y}
#
# self.unary = {1:lambda x:x ,2:lambda x: -x, 3: lambda x: tf.maximum(x,0), 4:lambda x : tf.pow(x,2),5:tf.tanh}
# binary = {1:lambda x,y: x+y,2:lambda x,y:x*y,3:lambda x,y:x-y,4:lambda x,y:tf.maximum(x,y),5:lambda x,y: tf.sigmoid(x)*y}
# inputs = {1:lambda x:x , 2:lambda x:0, 3: lambda x:3.14159265,4: lambda x : 1, 5: lambda x: 1.61803399}
示例8: test_forward_unary
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import erf [as 別名]
def test_forward_unary():
def _test_forward_unary(op, a_min=1, a_max=5, dtype=np.float32):
"""test unary operators"""
np_data = np.random.uniform(a_min, a_max, size=(2, 3, 5)).astype(dtype)
tf.reset_default_graph()
with tf.Graph().as_default():
in_data = tf.placeholder(dtype, (2, 3, 5), name="in_data")
out = op(in_data)
compare_tf_with_tvm([np_data], ['in_data:0'], out.name)
_test_forward_unary(tf.acos, -1, 1)
_test_forward_unary(tf.asin, -1, 1)
_test_forward_unary(tf.atanh, -1, 1)
_test_forward_unary(tf.sinh)
_test_forward_unary(tf.cosh)
_test_forward_unary(tf.acosh)
_test_forward_unary(tf.asinh)
_test_forward_unary(tf.atan)
_test_forward_unary(tf.sin)
_test_forward_unary(tf.cos)
_test_forward_unary(tf.tan)
_test_forward_unary(tf.tanh)
_test_forward_unary(tf.erf)
_test_forward_unary(tf.log)
_test_forward_unary(tf.log1p)
示例9: gelu
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import erf [as 別名]
def gelu(input_tensor):
"""Gaussian Error Linear Unit.
This is a smoother version of the RELU.
Original paper: https://arxiv.org/abs/1606.08415
Args:
input_tensor: float Tensor to perform activation.
Returns:
`input_tensor` with the GELU activation applied.
"""
cdf = 0.5 * (1.0 + tf.erf(input_tensor / tf.sqrt(2.0)))
return input_tensor * cdf
示例10: gelu
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import erf [as 別名]
def gelu(input_tensor):
"""Gaussian Error Linear Unit.
This is a smoother version of the RELU.
Original paper: https://arxiv.org/abs/1606.08415
Args:
input_tensor: float Tensor to perform activation.
Returns:
`input_tensor` with the GELU activation applied.
"""
cdf = 0.5 * (1.0 + tf.erf(input_tensor / tf.sqrt(2.0)))
return input_tensor * cdf
示例11: gelu
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import erf [as 別名]
def gelu(input_tensor):
"""Gaussian Error Linear Unit.
This is a smoother version of the RELU.
Original paper: https://arxiv.org/abs/1606.08415
Args:
input_tensor: float Tensor to perform activation.
Returns:
`input_tensor` with the GELU activation applied.
"""
cdf = 0.5 * (1.0 + tf.erf(input_tensor / tf.sqrt(2.0)))
return input_tensor * cdf
示例12: fully_variance_conv_2d
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import erf [as 別名]
def fully_variance_conv_2d(input_tensor, filter_shape, input_channels, output_channels, mean_initializer, padding,
name, stochastic=True, reuse=False):
with tf.variable_scope(name) as scope:
kernel = tf.get_variable('kernel',
[filter_shape[0], filter_shape[1], input_channels, output_channels],
initializer=mean_initializer, dtype=tf.float32, trainable=False)
log_sigma2 = tf.get_variable('log_sigma2', [filter_shape[0], filter_shape[1], input_channels, output_channels],
initializer=tf.constant_initializer(-3.0),
dtype=tf.float32, trainable=True)
conved_mu = tf.nn.conv2d(input_tensor, kernel, [1, 1, 1, 1], padding=padding)
conved_si = tf.sqrt(tf.nn.conv2d(input_tensor * input_tensor,
tf.exp(log_sigma2), [1, 1, 1, 1],
padding=padding)+1e-16)
output = conved_mu
if stochastic:
output += tf.random_normal(conved_mu.shape, mean=0, stddev=1) * conved_si
# summaries
if not reuse:
error = 0.5*(1.0+tf.erf((-conved_mu)/tf.sqrt(2.0)/conved_si))
tf.summary.scalar('error', tf.reduce_sum(error))
#tf.summary.histogram('log_sigma2', log_sigma2)
return output
# PHASE TRANSITION LAYERS
示例13: pt_dense
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import erf [as 別名]
def pt_dense(input_tensor, num_inputs, num_outputs, name, stochastic=True, with_bias=True, reuse=False):
with tf.variable_scope(name) as scope:
W = tf.get_variable('W', [num_inputs, num_outputs], initializer=tf.truncated_normal_initializer(1e-2),
dtype=tf.float32, trainable=True)
log_alpha = tf.get_variable('log_alpha', [], initializer=tf.constant_initializer(-10.0), dtype=tf.float32,
trainable=True)
log_alpha = tf.clip_by_value(log_alpha, -20.0, 20.0)
if not reuse:
# computing reg
k1, k2, k3 = 0.63576, 1.8732, 1.48695
C = -k1
mdkl = k1 * tf.nn.sigmoid(k2 + k3 * log_alpha) - 0.5 * tf.log1p(tf.exp(-log_alpha)) + C
kl = -tf.reduce_sum(mdkl) * tf.reduce_prod(tf.cast(W.get_shape(), tf.float32))
tf.add_to_collection('kl_loss', kl)
# computing output
mu = tf.matmul(input_tensor, W)
si = tf.sqrt(tf.matmul(input_tensor * input_tensor, tf.exp(log_alpha) * W * W) + 1e-16)
output = mu
if stochastic:
output += tf.random_normal(mu.shape, mean=0, stddev=1) * si
if with_bias:
biases = tf.get_variable('biases', num_outputs, tf.float32, tf.constant_initializer(0.0))
output = tf.nn.bias_add(output, biases)
# summaries
if not reuse:
if with_bias:
error = 0.5*(1.0+tf.erf((-mu-biases)/tf.sqrt(2.0)/si))
else:
error = 0.5*(1.0+tf.erf((-mu)/tf.sqrt(2.0)/si))
tf.summary.scalar('error', tf.reduce_sum(error))
tf.summary.scalar('log_alpha', log_alpha)
tf.add_to_collection('log_alpha', log_alpha)
return output
示例14: pt_conv_2d
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import erf [as 別名]
def pt_conv_2d(input_tensor, filter_shape, input_channels, output_channels, padding, name, stochastic=True,
with_bias=True, reuse=False):
with tf.variable_scope(name) as scope:
kernel = tf.get_variable('kernel', [filter_shape[0], filter_shape[1], input_channels, output_channels],
initializer=tf.contrib.layers.xavier_initializer(seed=322), dtype=tf.float32,
trainable=True)
log_alpha = tf.get_variable('log_alpha', [], initializer=tf.constant_initializer(-10.0), dtype=tf.float32,
trainable=True)
log_alpha = tf.clip_by_value(log_alpha, -20.0, 20.0)
if not reuse:
# computing reg
k1, k2, k3 = 0.63576, 1.8732, 1.48695
C = -k1
mdkl = k1 * tf.nn.sigmoid(k2 + k3 * log_alpha) - 0.5 * tf.log1p(tf.exp(-log_alpha)) + C
kl = -tf.reduce_sum(mdkl) * tf.reduce_prod(tf.cast(kernel.get_shape(), tf.float32))
tf.add_to_collection('kl_loss', kl)
# computing output
conved_mu = tf.nn.conv2d(input_tensor, kernel, [1, 1, 1, 1], padding=padding)
conved_si = tf.sqrt(tf.nn.conv2d(input_tensor * input_tensor,
tf.exp(log_alpha) * kernel * kernel,
[1, 1, 1, 1], padding=padding)+1e-16)
output = conved_mu
if stochastic:
output += tf.random_normal(conved_mu.shape, mean=0, stddev=1) * conved_si
if with_bias:
biases = tf.get_variable('biases', output_channels, tf.float32, tf.constant_initializer(0.0))
output = tf.nn.bias_add(output, biases)
# summaries
if not reuse:
if with_bias:
error = 0.5*(1.0+tf.erf((-conved_mu-biases)/tf.sqrt(2.0)/conved_si))
else:
error = 0.5*(1.0+tf.erf((-conved_mu)/tf.sqrt(2.0)/conved_si))
tf.summary.scalar('error', tf.reduce_sum(error))
tf.summary.scalar('log_alpha', log_alpha)
tf.add_to_collection('log_alpha', log_alpha)
return output
示例15: gelu
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import erf [as 別名]
def gelu(input_tensor):
"""Gaussian Error Linear Unit.
This is a smoother version of the RELU.
Original paper: https://arxiv.org/abs/1606.08415
Args:
input_tensor: float Tensor to perform activation.
Returns:
`input_tensor` with the GELU activation applied.
"""
cdf = 0.5 * (1.0 + tf.erf(input_tensor / tf.sqrt(2.0)))
return input_tensor * cdf