本文整理匯總了Python中tensorflow.equal方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.equal方法的具體用法?Python tensorflow.equal怎麽用?Python tensorflow.equal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.equal方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: check_tensor_shape
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import equal [as 別名]
def check_tensor_shape(tensor_tf, target_shape):
""" Return a Tensorflow boolean graph that indicates whether
sample[features_key] has the specified target shape. Only check
not None entries of target_shape.
:param tensor_tf: Tensor to check shape for.
:param target_shape: Target shape to compare tensor to.
:returns: True if shape is valid, False otherwise (as TF boolean).
"""
result = tf.constant(True)
for i, target_length in enumerate(target_shape):
if target_length:
result = tf.logical_and(
result,
tf.equal(tf.constant(target_length), tf.shape(tensor_tf)[i]))
return result
示例2: apply_with_random_selector
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import equal [as 別名]
def apply_with_random_selector(x, func, num_cases):
"""Computes func(x, sel), with sel sampled from [0...num_cases-1].
Args:
x: input Tensor.
func: Python function to apply.
num_cases: Python int32, number of cases to sample sel from.
Returns:
The result of func(x, sel), where func receives the value of the
selector as a python integer, but sel is sampled dynamically.
"""
sel = tf.random_uniform([], maxval=num_cases, dtype=tf.int32)
# Pass the real x only to one of the func calls.
return control_flow_ops.merge([
func(control_flow_ops.switch(x, tf.equal(sel, case))[1], case)
for case in range(num_cases)])[0]
示例3: matched_iou
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import equal [as 別名]
def matched_iou(boxlist1, boxlist2, scope=None):
"""Compute intersection-over-union between corresponding boxes in boxlists.
Args:
boxlist1: BoxList holding N boxes
boxlist2: BoxList holding N boxes
scope: name scope.
Returns:
a tensor with shape [N] representing pairwise iou scores.
"""
with tf.name_scope(scope, 'MatchedIOU'):
intersections = matched_intersection(boxlist1, boxlist2)
areas1 = area(boxlist1)
areas2 = area(boxlist2)
unions = areas1 + areas2 - intersections
return tf.where(
tf.equal(intersections, 0.0),
tf.zeros_like(intersections), tf.truediv(intersections, unions))
示例4: filter_field_value_equals
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import equal [as 別名]
def filter_field_value_equals(boxlist, field, value, scope=None):
"""Filter to keep only boxes with field entries equal to the given value.
Args:
boxlist: BoxList holding N boxes.
field: field name for filtering.
value: scalar value.
scope: name scope.
Returns:
a BoxList holding M boxes where M <= N
Raises:
ValueError: if boxlist not a BoxList object or if it does not have
the specified field.
"""
with tf.name_scope(scope, 'FilterFieldValueEquals'):
if not isinstance(boxlist, box_list.BoxList):
raise ValueError('boxlist must be a BoxList')
if not boxlist.has_field(field):
raise ValueError('boxlist must contain the specified field')
filter_field = boxlist.get_field(field)
gather_index = tf.reshape(tf.where(tf.equal(filter_field, value)), [-1])
return gather(boxlist, gather_index)
示例5: _apply_with_random_selector
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import equal [as 別名]
def _apply_with_random_selector(x, func, num_cases):
"""Computes func(x, sel), with sel sampled from [0...num_cases-1].
Args:
x: input Tensor.
func: Python function to apply.
num_cases: Python int32, number of cases to sample sel from.
Returns:
The result of func(x, sel), where func receives the value of the
selector as a python integer, but sel is sampled dynamically.
"""
rand_sel = tf.random_uniform([], maxval=num_cases, dtype=tf.int32)
# Pass the real x only to one of the func calls.
return control_flow_ops.merge([func(
control_flow_ops.switch(x, tf.equal(rand_sel, case))[1], case)
for case in range(num_cases)])[0]
示例6: subtract_channel_mean
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import equal [as 別名]
def subtract_channel_mean(image, means=None):
"""Normalizes an image by subtracting a mean from each channel.
Args:
image: A 3D tensor of shape [height, width, channels]
means: float list containing a mean for each channel
Returns:
normalized_images: a tensor of shape [height, width, channels]
Raises:
ValueError: if images is not a 4D tensor or if the number of means is not
equal to the number of channels.
"""
with tf.name_scope('SubtractChannelMean', values=[image, means]):
if len(image.get_shape()) != 3:
raise ValueError('Input must be of size [height, width, channels]')
if len(means) != image.get_shape()[-1]:
raise ValueError('len(means) must match the number of channels')
return image - [[means]]
示例7: test_not_done_batch
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import equal [as 別名]
def test_not_done_batch(self):
step = tf.Variable(0, False, dtype=tf.int32, name='step')
done = tf.equal([step % 3, step % 4], 0)
score = tf.cast([step, step ** 2], tf.float32)
loop = tools.Loop(None, step)
loop.add_phase(
'phase_1', done, score, summary='', steps=1, report_every=8)
# Step: 0 2 4 6
# Score 1: 0 2 4 6
# Done 1: x x
# Score 2: 0 4 16 32
# Done 2: x x
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
scores = list(loop.run(sess, saver=None, max_step=8))
self.assertEqual(8, sess.run(step))
self.assertAllEqual([(0 + 0 + 16 + 6) / 4], scores)
示例8: _apply_cond
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import equal [as 別名]
def _apply_cond(self, apply_fn, grad, var, *args, **kwargs):
"""Apply conditionally if counter is zero."""
grad_acc = self.get_slot(var, "grad_acc")
def apply_adam(grad_acc, apply_fn, grad, var, *args, **kwargs):
total_grad = (grad_acc + grad) / tf.cast(self._n_t, grad.dtype)
adam_op = apply_fn(total_grad, var, *args, **kwargs)
with tf.control_dependencies([adam_op]):
grad_acc_to_zero_op = grad_acc.assign(tf.zeros_like(grad_acc),
use_locking=self._use_locking)
return tf.group(adam_op, grad_acc_to_zero_op)
def accumulate_gradient(grad_acc, grad):
assign_op = tf.assign_add(grad_acc, grad, use_locking=self._use_locking)
return tf.group(assign_op) # Strip return value
return tf.cond(
tf.equal(self._get_iter_variable(), 0),
lambda: apply_adam(grad_acc, apply_fn, grad, var, *args, **kwargs),
lambda: accumulate_gradient(grad_acc, grad))
示例9: _finish
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import equal [as 別名]
def _finish(self, update_ops, name_scope):
"""Updates beta_power variables every n batches and incrs counter."""
iter_ = self._get_iter_variable()
beta1_power, beta2_power = self._get_beta_accumulators()
with tf.control_dependencies(update_ops):
with tf.colocate_with(iter_):
def update_beta_op():
update_beta1 = beta1_power.assign(
beta1_power * self._beta1_t,
use_locking=self._use_locking)
update_beta2 = beta2_power.assign(
beta2_power * self._beta2_t,
use_locking=self._use_locking)
return tf.group(update_beta1, update_beta2)
maybe_update_beta = tf.cond(
tf.equal(iter_, 0), update_beta_op, tf.no_op)
with tf.control_dependencies([maybe_update_beta]):
update_iter = iter_.assign(tf.mod(iter_ + 1, self._n_t),
use_locking=self._use_locking)
return tf.group(
*update_ops + [update_iter, maybe_update_beta], name=name_scope)
示例10: pool
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import equal [as 別名]
def pool(inputs, window_size, pooling_type, padding, strides=(1, 1)):
"""Pooling (supports "LEFT")."""
with tf.name_scope("pool", values=[inputs]):
static_shape = inputs.get_shape()
if not static_shape or len(static_shape) != 4:
raise ValueError("Inputs to conv must have statically known rank 4.")
# Add support for left padding.
if padding == "LEFT":
assert window_size[0] % 2 == 1 and window_size[1] % 2 == 1
if len(static_shape) == 3:
width_padding = 2 * (window_size[1] // 2)
padding_ = [[0, 0], [width_padding, 0], [0, 0]]
else:
height_padding = 2 * (window_size[0] // 2)
cond_padding = tf.cond(
tf.equal(shape_list(inputs)[2], 1), lambda: tf.constant(0),
lambda: tf.constant(2 * (window_size[1] // 2)))
width_padding = 0 if static_shape[2] == 1 else cond_padding
padding_ = [[0, 0], [height_padding, 0], [width_padding, 0], [0, 0]]
inputs = tf.pad(inputs, padding_)
inputs.set_shape([static_shape[0], None, None, static_shape[3]])
padding = "VALID"
return tf.nn.pool(inputs, window_size, pooling_type, padding, strides=strides)
示例11: top_1_tpu
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import equal [as 別名]
def top_1_tpu(inputs):
"""find max and argmax over the last dimension.
Works well on TPU
Args:
inputs: A tensor with shape [..., depth]
Returns:
values: a Tensor with shape [...]
indices: a Tensor with shape [...]
"""
inputs_max = tf.reduce_max(inputs, axis=-1, keepdims=True)
mask = tf.to_int32(tf.equal(inputs_max, inputs))
index = tf.range(tf.shape(inputs)[-1]) * mask
return tf.squeeze(inputs_max, -1), tf.reduce_max(index, axis=-1)
示例12: build_train_op
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import equal [as 別名]
def build_train_op(global_step, encdec_variables, discri_variables):
"""Returns the training Op.
When global_step % 2 == 0, it minimizes l_final and updates encdec_variables.
Otherwise, it minimizes l_d and updates discri_variables.
Args:
global_step: The training step.
encdec_variables: The list of variables of the encoder/decoder model.
discri_variables: The list of variables of the discriminator.
Returns:
The training op.
"""
encdec_opt = tf.train.AdamOptimizer(learning_rate=0.0003, beta1=0.5)
discri_opt = tf.train.RMSPropOptimizer(0.0005)
encdec_gradients = encdec_opt.compute_gradients(l_final, var_list=encdec_variables)
discri_gradients = discri_opt.compute_gradients(l_d, var_list=discri_variables)
return tf.cond(
tf.equal(tf.mod(global_step, 2), 0),
true_fn=lambda: encdec_opt.apply_gradients(encdec_gradients, global_step=global_step),
false_fn=lambda: discri_opt.apply_gradients(discri_gradients, global_step=global_step))
示例13: sgd
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import equal [as 別名]
def sgd(training_data, training_labels, test_data, test_labels):
# model
with tf.variable_scope("regression"):
x = tf.placeholder(tf.float32, [None, 901])
y, variables = regression(x)
# train
y_ = tf.placeholder("float", [None, 2])
cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(train_step, feed_dict={x: training_data, y_: training_labels})
print(sess.run(accuracy, feed_dict={x: test_data, y_: test_labels}))
示例14: iou
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import equal [as 別名]
def iou(boxlist1, boxlist2, scope=None):
"""Computes pairwise intersection-over-union between box collections.
Args:
boxlist1: BoxList holding N boxes
boxlist2: BoxList holding M boxes
scope: name scope.
Returns:
a tensor with shape [N, M] representing pairwise iou scores.
"""
with tf.name_scope(scope, 'IOU'):
intersections = intersection(boxlist1, boxlist2)
areas1 = area(boxlist1)
areas2 = area(boxlist2)
unions = (
tf.expand_dims(areas1, 1) + tf.expand_dims(areas2, 0) - intersections)
return tf.where(
tf.equal(intersections, 0.0),
tf.zeros_like(intersections), tf.truediv(intersections, unions))
示例15: _truncate_seq_pair
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import equal [as 別名]
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()