本文整理匯總了Python中tensorflow.ensure_shape方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.ensure_shape方法的具體用法?Python tensorflow.ensure_shape怎麽用?Python tensorflow.ensure_shape使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.ensure_shape方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: sparse_add_self_loops
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ensure_shape [as 別名]
def sparse_add_self_loops(indices, N=None):
"""
Given the indices of a square SparseTensor, adds the diagonal entries (i, i)
and returns the reordered indices.
:param indices: Tensor of rank 2, the indices to a SparseTensor.
:param N: the size of the N x N SparseTensor indexed by the indices. If `None`,
N is calculated as the maximum entry in the indices plus 1.
:return: Tensor of rank 2, the indices to a SparseTensor.
"""
N = tf.reduce_max(indices) + 1 if N is None else N
row, col = indices[..., 0], indices[..., 1]
mask = tf.ensure_shape(row != col, row.shape)
sl_indices = tf.range(N, dtype=row.dtype)[:, None]
sl_indices = tf.repeat(sl_indices, 2, -1)
indices = tf.concat((indices[mask], sl_indices), 0)
dummy_values = tf.ones_like(indices[:, 0])
indices, _ = gen_sparse_ops.sparse_reorder(indices, dummy_values, (N, N))
return indices
示例2: parse_fn
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ensure_shape [as 別名]
def parse_fn(self, file):
config = self.config
image_size = config.IMAGE_SIZE
dmap_size = config.MAP_SIZE
label_size = 1
def _parse_function(_file):
_file = _file.decode('UTF-8')
image_bytes = image_size * image_size * 3
dmap_bytes = dmap_size * dmap_size
bin = np.fromfile(_file, dtype='uint8')
image = np.transpose(bin[0:image_bytes].reshape((3, image_size, image_size)) / 255, (1, 2, 0))
dmap = np.transpose(bin[image_bytes:image_bytes+dmap_bytes].reshape((1, dmap_size, dmap_size)) / 255, (1, 2, 0))
label = bin[image_bytes+dmap_bytes:image_bytes+dmap_bytes+label_size] / 1
dmap1 = dmap * (1-label)
dmap2 = np.ones_like(dmap) * label
dmap = np.concatenate([dmap1, dmap2], axis=2)
return image.astype(np.float32), dmap.astype(np.float32), label.astype(np.float32)
image_ts, dmap_ts, label_ts = tf.numpy_function(_parse_function, [file], [tf.float32, tf.float32, tf.float32])
image_ts = tf.ensure_shape(image_ts, [config.IMAGE_SIZE, config.IMAGE_SIZE, 3])
dmap_ts = tf.ensure_shape(dmap_ts, [config.MAP_SIZE, config.MAP_SIZE, 2])
label_ts = tf.ensure_shape(label_ts, [1])
return image_ts, dmap_ts, label_ts
示例3: gaussianMI
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ensure_shape [as 別名]
def gaussianMI(x, y, constellation, M, dtype=tf.float64):
"""
Computes mutual information with Gaussian auxiliary channel assumption and constellation with uniform porbability distribution
x: (1, N), N normalized complex samples at the transmitter, where N is the batchSize/sampleSize
y: (1, N), N normalized complex observations at the receiver, where N is the batchSize/sampleSize
constellation: (1, M), normalized complex constellation of order M
Transcribed from Dr. Tobias Fehenberger MATLAB code.
See: https://www.fehenberger.de/#sourcecode
"""
if len(constellation.shape) == 1:
constellation = tf.expand_dims(constellation, axis=0)
if len(y.shape) == 1:
y = tf.expand_dims(y, axis=0)
if len(x.shape) == 1:
x = tf.expand_dims(x, axis=0)
if y.shape[0] != 1:
y = tf.linalg.matrix_transpose(y)
if x.shape[0] != 1:
x = tf.linalg.matrix_transpose(x)
if constellation.shape[0] == 1:
constellation = tf.linalg.matrix_transpose(constellation)
N = tf.cast( tf.shape(x)[1], dtype )
PI = tf.constant( np.pi, dtype=dtype )
REALMIN = tf.constant( np.finfo(float).tiny, dtype=dtype )
xint = tf.math.argmin(tf.square(tf.abs(x - constellation)), axis=0, output_type=tf.int32)
x_count = tf.math.bincount(xint)
x_count = tf.ensure_shape(x_count, (M,))
P_X = tf.cast(x_count, dtype) / N
N0 = tf.reduce_mean( tf.square( tf.abs(x-y) ) )
qYonX = 1 / ( PI*N0 ) * tf.exp( ( -tf.square(tf.math.real(y)-tf.math.real(x)) -tf.square(tf.math.imag(y)-tf.math.imag(x)) ) / N0 )
qY = []
for ii in np.arange(M):
temp = P_X[ii] * (1 / (PI * N0) * tf.exp( ( -tf.square(tf.math.real(y)-tf.math.real(constellation[ii,0])) -tf.square(tf.math.imag(y)-tf.math.imag(constellation[ii,0])) ) / N0) )
qY.append(temp)
qY = tf.reduce_sum( tf.concat(qY, axis=0), axis=0)
MI = 1 / N * tf.reduce_sum( log2( tf.math.maximum(qYonX, REALMIN) / tf.math.maximum(qY, REALMIN) ) )
return MI
示例4: rotate_train_nhwc
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ensure_shape [as 別名]
def rotate_train_nhwc(x, pi):
sym = tf.random_uniform(
[],
minval=0,
maxval=len(SYMMETRIES),
dtype=tf.int32,
seed=123)
def rotate(tensor):
# flipLeftRight
tensor = tf.where(
tf.bitwise.bitwise_and(sym, 1) > 0,
tf.reverse(tensor, axis=[0]),
tensor)
# flipUpDown
tensor = tf.where(
tf.bitwise.bitwise_and(sym, 2) > 0,
tf.reverse(tensor, axis=[1]),
tensor)
# flipDiagonal
tensor = tf.where(
tf.bitwise.bitwise_and(sym, 4) > 0,
tf.transpose(tensor, perm=[1, 0, 2]),
tensor)
return tensor
# TODO(tommadams): use tf.ensure_shape instead of tf.assert_equal.
squares = go.N * go.N
assert_shape_pi = tf.assert_equal(pi.shape.as_list(), [squares + 1])
x_shape = x.shape.as_list()
assert_shape_x = tf.assert_equal(x_shape, [go.N, go.N, x_shape[2]])
pi_move = tf.slice(pi, [0], [squares], name="slice_moves")
pi_pass = tf.slice(pi, [squares], [1], name="slice_pass")
# Add a final dim so that x and pi have same shape: [N,N,num_features].
pi_n_by_n = tf.reshape(pi_move, [go.N, go.N, 1])
with tf.control_dependencies([assert_shape_x, assert_shape_pi]):
pi_rot = tf.concat(
[tf.reshape(rotate(pi_n_by_n), [squares]), pi_pass],
axis=0)
return rotate(x), pi_rot
示例5: rotate_train_nchw
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ensure_shape [as 別名]
def rotate_train_nchw(x, pi):
sym = tf.random_uniform(
[],
minval=0,
maxval=len(SYMMETRIES),
dtype=tf.int32,
seed=123)
def rotate(tensor):
# flipLeftRight
tensor = tf.where(
tf.bitwise.bitwise_and(sym, 1) > 0,
tf.reverse(tensor, axis=[1]),
tensor)
# flipUpDown
tensor = tf.where(
tf.bitwise.bitwise_and(sym, 2) > 0,
tf.reverse(tensor, axis=[2]),
tensor)
# flipDiagonal
tensor = tf.where(
tf.bitwise.bitwise_and(sym, 4) > 0,
tf.transpose(tensor, perm=[0, 2, 1]),
tensor)
return tensor
# TODO(tommadams): use tf.ensure_shape instead of tf.assert_equal.
squares = go.N * go.N
assert_shape_pi = tf.assert_equal(pi.shape.as_list(), [squares + 1])
x_shape = x.shape.as_list()
assert_shape_x = tf.assert_equal(x_shape, [x_shape[0], go.N, go.N])
pi_move = tf.slice(pi, [0], [squares], name="slice_moves")
pi_pass = tf.slice(pi, [squares], [1], name="slice_pass")
# Add a dim so that x and pi have same shape: [num_features,N,N].
pi_n_by_n = tf.reshape(pi_move, [1, go.N, go.N])
with tf.control_dependencies([assert_shape_x, assert_shape_pi]):
pi_rot = tf.concat(
[tf.reshape(rotate(pi_n_by_n), [squares]), pi_pass],
axis=0)
return rotate(x), pi_rot