本文整理匯總了Python中tensorflow.enable_eager_execution方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.enable_eager_execution方法的具體用法?Python tensorflow.enable_eager_execution怎麽用?Python tensorflow.enable_eager_execution使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.enable_eager_execution方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import enable_eager_execution [as 別名]
def main(_):
logging.set_verbosity(FLAGS.log_level)
if FLAGS.tf_eager:
tf.enable_eager_execution()
if FLAGS.tf_xla:
tf.config.optimizer.set_jit(True)
_setup_gin()
# Setup output directory
output_dir = FLAGS.output_dir or _default_output_dir()
trax.log("Using --output_dir %s" % output_dir)
output_dir = os.path.expanduser(output_dir)
# If on TPU, let JAX know.
if FLAGS.use_tpu:
jax.config.update("jax_platform_name", "tpu")
trax.train(output_dir=output_dir)
示例2: main
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import enable_eager_execution [as 別名]
def main():
tf.enable_eager_execution()
subreddit_based_sim_dfs(subreddits=subs, treat_strength=beta0, con_strength=beta1, noise_level=gamma, setting=mode, seed=0,
base_output_dir=base_output_dir)
# print(itr.get_next()["token_ids"].name)
# for i in range(1000):
# sample = itr.get_next()
#
# print(np.unique(df['year']))
# print(df.groupby(['year'])['buzzy_title'].agg(np.mean))
# print(df.groupby(['year'])['theorem_referenced'].agg(np.mean))
# print(df.groupby(['year'])['accepted'].agg(np.mean))
示例3: main
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import enable_eager_execution [as 別名]
def main(_):
# Enables eager context for TF 1.x. TF 2.x will use eager by default.
# This is used to conveniently get a representative dataset generator using
# TensorFlow training input helper.
tf.enable_eager_execution()
converter = tf.lite.TFLiteConverter.from_saved_model(
FLAGS.saved_model_dir,
input_arrays=[FLAGS.input_name],
output_arrays=[FLAGS.output_name])
# Chooses a tf.lite.Optimize mode:
# https://www.tensorflow.org/api_docs/python/tf/lite/Optimize
converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_LATENCY]
converter.representative_dataset = tf.lite.RepresentativeDataset(
representative_dataset_gen)
if FLAGS.require_int8:
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
tflite_buffer = converter.convert()
tf.gfile.GFile(FLAGS.output_tflite, "wb").write(tflite_buffer)
print("tflite model written to %s" % FLAGS.output_tflite)
示例4: _setup_tfeager
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import enable_eager_execution [as 別名]
def _setup_tfeager(*args):
import tensorflow as tf
tf.enable_eager_execution()
tf.reset_default_graph()
from delira.models.backends.tf_eager import AbstractTfEagerNetwork
class Model(AbstractTfEagerNetwork):
def __init__(self):
super().__init__()
self.dense = tf.keras.layers.Dense(1, activation="relu")
def call(self, x: tf.Tensor):
return {"pred": self.dense(x)}
return Model()
示例5: test_resize_upsample_tf
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import enable_eager_execution [as 別名]
def test_resize_upsample_tf(self):
if BACKEND != 'tensorflow':
return
import tensorflow as tf
tf.enable_eager_execution()
from VSR.Backend.TF.Util import upsample
Im = Image.open(URL)
for X in [Im, Im.convert('L')]:
w = X.width
h = X.height
for ss in [2, 3, 4, 5, 6]:
GT = X.resize([w * ss, h * ss], Image.BICUBIC)
gt = np.asarray(GT, dtype='float32') / 255
x = tf.constant(np.asarray(X), dtype='float32') / 255
y = upsample(x, ss).numpy().clip(0, 1)
self.assertGreaterEqual(self.psnr(y, gt), 30, f"{X.mode}, {ss}")
示例6: test_resize_downsample_tf
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import enable_eager_execution [as 別名]
def test_resize_downsample_tf(self):
if BACKEND != 'tensorflow':
return
import tensorflow as tf
tf.enable_eager_execution()
from VSR.Backend.TF.Util import downsample
Im = Image.open(URL)
for X in [Im, Im.convert('L')]:
w = X.width
h = X.height
for ss in [2, 4, 6, 8]:
w_ = w - w % ss
h_ = h - h % ss
X = X.crop([0, 0, w_, h_])
GT = X.resize([w_ // ss, h_ // ss], Image.BICUBIC)
gt = np.asarray(GT, dtype='float32') / 255
x = tf.constant(np.asarray(X), dtype='float32') / 255
y = downsample(x, ss).numpy().clip(0, 1)
self.assertGreaterEqual(self.psnr(y, gt), 30, f"{X.mode}, {ss}")
示例7: test_kgcn_runs
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import enable_eager_execution [as 別名]
def test_kgcn_runs(self):
tf.enable_eager_execution()
graph = GraphsTuple(nodes=tf.convert_to_tensor(np.array([[1, 2, 0], [1, 0, 0], [1, 1, 0]], dtype=np.float32)),
edges=tf.convert_to_tensor(np.array([[1, 0, 0], [1, 0, 0]], dtype=np.float32)),
globals=tf.convert_to_tensor(np.array([[0, 0, 0, 0, 0]], dtype=np.float32)),
receivers=tf.convert_to_tensor(np.array([1, 2], dtype=np.int32)),
senders=tf.convert_to_tensor(np.array([0, 1], dtype=np.int32)),
n_node=tf.convert_to_tensor(np.array([3], dtype=np.int32)),
n_edge=tf.convert_to_tensor(np.array([2], dtype=np.int32)))
thing_embedder = ThingEmbedder(node_types=['a', 'b', 'c'], type_embedding_dim=5, attr_embedding_dim=6,
categorical_attributes={'a': ['a1', 'a2', 'a3'], 'b': ['b1', 'b2', 'b3']},
continuous_attributes={'c': (0, 1)})
role_embedder = RoleEmbedder(num_edge_types=2, type_embedding_dim=5)
kgcn = KGCN(thing_embedder, role_embedder, edge_output_size=3, node_output_size=3)
kgcn(graph, 2)
示例8: main
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import enable_eager_execution [as 別名]
def main():
tf.enable_eager_execution()
tf.app.run(main=train)
示例9: main
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import enable_eager_execution [as 別名]
def main():
# Enable eager execution for DataFrame endpoint
import tensorflow as tf
tf.enable_eager_execution()
# Set up training data
train_data_dir = get_data_dir("train")
train_data = os.path.join(train_data_dir, "part-*")
schema_path = os.path.join(train_data_dir, "_inferred_schema.pb")
df_train_data = next(Datasets.dataframe.examples_via_schema(train_data,
schema_path,
batch_size=1024))
# the feature keys are ordered alphabetically for determinism
label_keys = sorted([l for l in set(df_train_data.columns) if l.startswith("class_name")])
feature_keys = sorted(set(df_train_data.columns).difference(label_keys))
label = df_train_data[label_keys].apply(transform_labels, axis=1)
features = df_train_data[feature_keys]
# Build model
from sklearn.linear_model import LogisticRegression
model = LogisticRegression(multi_class="multinomial", solver="newton-cg")
model.fit(features, label)
# Set up eval data
eval_data_dir = get_data_dir("eval")
eval_data = os.path.join(eval_data_dir, "part-*")
df_eval_data = next(Datasets.dataframe.examples_via_schema(eval_data,
schema_path,
batch_size=1024))
eval_label = df_eval_data[label_keys].apply(transform_labels, axis=1)
eval_features = df_eval_data[feature_keys]
# Evaluate model
score = model.score(eval_features, eval_label)
print("Score is %f" % score)
示例10: set_backend
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import enable_eager_execution [as 別名]
def set_backend(backend):
global _backend, _func_dict
if _backend is not None:
raise RuntimeError('Backend is already specified')
if type(backend) is not int or backend < 0 or backend > 4:
raise ValueError('value of backend not valid')
_backend = backend
if backend is TENSORFLOW:
from .tensorflow_ops import func_dict
elif backend is TENSORFLOW_EAGER:
import tensorflow as tf
tf_version = tf.__version__.split('.')
if int(tf_version[0]) < 1:
raise RuntimeError('Tensorflow version too low')
if int(tf_version[0]) == 1 and int(tf_version[1]) < 7:
raise RuntimeError('Tensorflow version too low')
tf.enable_eager_execution()
from .tensorflow_eager_ops import func_dict
elif backend is TENSORFLOW_KERAS:
import tensorflow as tf
from .tensorflow_keras_ops import func_dict
elif backend is PYTORCH:
from .pytorch_ops import func_dict
elif backend is KERAS:
from .keras_ops import func_dict
_func_dict = func_dict
if _func_dict is None:
raise RuntimeError('Backend %s is not supported' % backend)
示例11: setUp
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import enable_eager_execution [as 別名]
def setUp(self) -> None:
tf.compat.v1.reset_default_graph()
tf.compat.v1.enable_eager_execution()
print("Eager Execution:", tf.executing_eagerly())
示例12: setUpClass
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import enable_eager_execution [as 別名]
def setUpClass(cls):
tf.enable_eager_execution()
argv = [
'--gqa-paths', 'input_data/raw/test.yaml',
'--input-dir', 'input_data/processed/test',
'--limit', '100',
'--predict-holdback', '0.1',
'--eval-holdback', '0.1',
]
args = get_args(argv=argv)
cls.args = args
build(args)
示例13: main
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import enable_eager_execution [as 別名]
def main():
tf.enable_eager_execution()
buzzy_title_based_sim_dfs(treat_strength=beta0, con_strength=beta1, noise_level=gamma, setting=mode, seed=0,
base_output_dir=base_output_dir)
示例14: map_func
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import enable_eager_execution [as 別名]
def map_func(x):
x['a'] = x['a'] * 10
return x
# tf.enable_eager_execution()
示例15: enable_eager
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import enable_eager_execution [as 別名]
def enable_eager(self):
tf.enable_eager_execution()