本文整理匯總了Python中tensorflow.edit_distance方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.edit_distance方法的具體用法?Python tensorflow.edit_distance怎麽用?Python tensorflow.edit_distance使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.edit_distance方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: error_rate
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import edit_distance [as 別名]
def error_rate(y_true, decoded):
y_true_shape = tf.shape(y_true)
decoded_shape = tf.shape(decoded)
max_length = tf.maximum(y_true_shape[-1], decoded_shape[-1])
if y_true.dtype == tf.string:
truth = string_to_sparse(y_true)
else:
truth = tf.sparse.from_dense(y_true)
if decoded.dtype == tf.string:
hypothesis = string_to_sparse(decoded)
else:
hypothesis = tf.sparse.from_dense(decoded)
err = tf.edit_distance(hypothesis, truth, normalize=False)
err_norm = err / tf.cast(max_length, dtype=tf.float32)
return err_norm
示例2: compute_edit_distance
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import edit_distance [as 別名]
def compute_edit_distance(session, labels_true_st, labels_pred_st):
"""Compute edit distance per mini-batch.
Args:
session:
labels_true_st: A `SparseTensor` of ground truth
labels_pred_st: A `SparseTensor` of prediction
Returns:
edit_distances: list of edit distance of each uttearance
"""
indices, values, dense_shape = labels_true_st
labels_pred_pl = tf.SparseTensor(indices, values, dense_shape)
indices, values, dense_shape = labels_pred_st
labels_true_pl = tf.SparseTensor(indices, values, dense_shape)
edit_op = tf.edit_distance(labels_pred_pl, labels_true_pl, normalize=True)
edit_distances = session.run(edit_op)
return edit_distances
示例3: update_state
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import edit_distance [as 別名]
def update_state(self, sparse_predictions, samples, logit_length=None):
""" Accumulate errors and counts """
validated_label = tf.cast(
tf.sparse.from_dense(samples["output"]), dtype=tf.int64
)
labels_counter = tf.cast(tf.shape(validated_label.values)[0], tf.float32)
num_errs = tf.edit_distance(
sparse_predictions, validated_label, normalize=False
)
num_errs = tf.reduce_sum(num_errs)
if self.rank_size > 1:
num_errs = hvd.allreduce(num_errs, average=False)
labels_counter = hvd.allreduce(labels_counter, average=False)
self.error_count(num_errs)
self.total_count(labels_counter)
return num_errs, labels_counter
示例4: loss
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import edit_distance [as 別名]
def loss(self):
""" Define loss
return
"""
# ctc loss
with tf.name_scope('loss'):
self.avg_loss = tf.reduce_mean(ctc_ops.ctc_loss(self.text, self.logits, self.seq_length))
tf.summary.scalar('loss',self.avg_loss)
# [optimizer]
with tf.name_scope('train'):
self.optimizer = tf.train.AdamOptimizer(learning_rate=self.hyparam.learning_rate).minimize(self.avg_loss)
with tf.name_scope("decode"):
self.decoded, log_prob = ctc_ops.ctc_beam_search_decoder(self.logits, self.seq_length, merge_repeated=False)
with tf.name_scope("ctc_beam_search_decode"):
self.prob = tf.nn.softmax(self.logits, dim=0)
self.prob = tf.transpose(self.prob, [1, 0, 2]) # keep the same dim with decoder {batch_size, time_step, n_character}
self.decoder = LM_decoder(self.hyparam.alpha, self.hyparam.beta, self.hyparam.lang_model_path, self.words)
with tf.name_scope("accuracy"):
self.distance = tf.edit_distance(tf.cast(self.decoded[0], tf.int32), self.text)
# compute label error rate (accuracy)
self.label_err = tf.reduce_mean(self.distance, name='label_error_rate')
tf.summary.scalar('accuracy', self.label_err)
示例5: setup_summary_statistics
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import edit_distance [as 別名]
def setup_summary_statistics(self):
# Create a placholder for the summary statistics
with tf.name_scope("accuracy"):
# Compute the edit (Levenshtein) distance of the top path
distance = tf.edit_distance(
tf.cast(self.decoded[0], tf.int32), self.targets)
# Compute the label error rate (accuracy)
self.ler = tf.reduce_mean(distance, name='label_error_rate')
self.ler_placeholder = tf.placeholder(dtype=tf.float32, shape=[])
self.train_ler_op = tf.summary.scalar(
"train_label_error_rate", self.ler_placeholder)
self.dev_ler_op = tf.summary.scalar(
"validation_label_error_rate", self.ler_placeholder)
self.test_ler_op = tf.summary.scalar(
"test_label_error_rate", self.ler_placeholder)
示例6: edit_distance
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import edit_distance [as 別名]
def edit_distance(targets, target_seq_length, predictions_sequence,
predictions_seq_length, output_feature_name):
predicts = to_sparse(predictions_sequence,
predictions_seq_length,
tf.shape(predictions_sequence)[1])
labels = to_sparse(targets,
target_seq_length,
tf.shape(targets)[1])
edit_distance = tf.edit_distance(predicts, labels,
name='edit_distance_{}'.format(
output_feature_name))
mean_edit_distance = tf.reduce_mean(edit_distance,
name='mean_edit_distance_{}'.format(
output_feature_name))
return edit_distance, mean_edit_distance
示例7: create_solver
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import edit_distance [as 別名]
def create_solver(self):
def sparse_targets(targets, targets_length):
return tf.cast(K.ctc_label_dense_to_sparse(targets, math_ops.cast(
K.flatten(targets_length), dtype='int32')), 'int32')
def create_cer(sparse_decoded, sparse_targets):
return tf.edit_distance(tf.cast(sparse_decoded, tf.int32), sparse_targets, normalize=True)
# Note for codec change: the codec size is derived upon creation, therefore the ctc ops must be created
# using the true codec size (the W/B-Matrix may change its shape however during loading/codec change
# to match the true codec size
loss = KL.Lambda(lambda args: K.ctc_batch_cost(*args), output_shape=(1,), name='ctc')((self.targets, self.softmax, self.output_seq_len, self.targets_length))
self.sparse_targets = KL.Lambda(lambda args: sparse_targets(*args), name='sparse_targets')((self.targets, self.targets_length))
self.cer = KL.Lambda(lambda args: create_cer(*args), output_shape=(1,), name='cer')((self.sparse_decoded, self.sparse_targets))
if self.network_proto.solver == NetworkParams.MOMENTUM_SOLVER:
optimizer = keras.optimizers.SGD(self.network_proto.learning_rate, self.network_proto.momentum, clipnorm=self.network_proto.clipping_norm)
elif self.network_proto.solver == NetworkParams.ADAM_SOLVER:
optimizer = keras.optimizers.Adam(self.network_proto.learning_rate, clipnorm=self.network_proto.clipping_norm)
else:
raise Exception("Unknown solver of type '%s'" % self.network_proto.solver)
def ctc_loss(t, p):
return p
model = Model(inputs=[self.targets, self.input_data, self.input_length, self.targets_length], outputs=[loss])
model.compile(optimizer=optimizer, loss={'ctc': ctc_loss},
)
return model
示例8: _testEditDistanceST
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import edit_distance [as 別名]
def _testEditDistanceST(
self, hypothesis_st, truth_st, normalize, expected_output,
expected_shape, expected_err_re=None):
edit_distance = tf.edit_distance(
hypothesis=hypothesis_st, truth=truth_st, normalize=normalize)
if expected_err_re is None:
self.assertEqual(edit_distance.get_shape(), expected_shape)
output = edit_distance.eval()
self.assertAllClose(output, expected_output)
else:
with self.assertRaisesOpError(expected_err_re):
edit_distance.eval()
示例9: cal_perf
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import edit_distance [as 別名]
def cal_perf(pred, sparse_labels):
"""Helper function to calculate edit distance and accuracy.
"""
edist = tf.edit_distance(tf.cast(pred[0], tf.int32), sparse_labels,
normalize=False)
acc = tf.reduce_mean(tf.cast(tf.equal(edist, 0), tf.float32))
return edist, acc
示例10: _get_testing
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import edit_distance [as 別名]
def _get_testing(rnn_logits,sequence_length,label,label_length):
"""Create ops for testing (all scalars):
loss: CTC loss function value,
label_error: Batch-normalized edit distance on beam search max
sequence_error: Batch-normalized sequence error rate
"""
with tf.name_scope("train"):
loss = model.ctc_loss_layer(rnn_logits,label,sequence_length)
with tf.name_scope("test"):
predictions,_ = tf.nn.ctc_beam_search_decoder(rnn_logits,
sequence_length,
beam_width=128,
top_paths=1,
merge_repeated=True)
hypothesis = tf.cast(predictions[0], tf.int32) # for edit_distance
label_errors = tf.edit_distance(hypothesis, label, normalize=False)
sequence_errors = tf.count_nonzero(label_errors,axis=0)
total_label_error = tf.reduce_sum( label_errors )
total_labels = tf.reduce_sum( label_length )
label_error = tf.truediv( total_label_error,
tf.cast(total_labels, tf.float32 ),
name='label_error')
sequence_error = tf.truediv( tf.cast( sequence_errors, tf.int32 ),
tf.shape(label_length)[0],
name='sequence_error')
tf.summary.scalar( 'loss', loss )
tf.summary.scalar( 'label_error', label_error )
tf.summary.scalar( 'sequence_error', sequence_error )
return loss, label_error, sequence_error
示例11: get_edit_distance
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import edit_distance [as 別名]
def get_edit_distance(hyp_arr,truth_arr,mode='train'):
''' calculate edit distance
'''
graph = tf.Graph()
with graph.as_default():
truth = tf.sparse_placeholder(tf.int32)
hyp = tf.sparse_placeholder(tf.int32)
editDist = tf.edit_distance(hyp, truth, normalize=True)
with tf.Session(graph=graph) as session:
truthTest = list_to_sparse_tensor(truth_arr, mode)
hypTest = list_to_sparse_tensor(hyp_arr, mode)
feedDict = {truth: truthTest, hyp: hypTest}
dist = session.run(editDist, feed_dict=feedDict)
return dist
示例12: edit_distance
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import edit_distance [as 別名]
def edit_distance(hypothesis, truth, eos_id, mapping=None):
if mapping:
mapping = tf.convert_to_tensor(mapping)
hypothesis = tf.nn.embedding_lookup(mapping, hypothesis)
truth = tf.nn.embedding_lookup(mapping, truth)
hypothesis = dense_to_sparse(hypothesis, eos_id, merge_repeated=True)
truth = dense_to_sparse(truth, eos_id, merge_repeated=True)
return tf.edit_distance(hypothesis, truth, normalize=True)
示例13: tf_edit_distance
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import edit_distance [as 別名]
def tf_edit_distance(hypothesis, truth, norm=False):
""" Edit distance using tensorflow
inputs are tf.Sparse_tensors """
return tf.edit_distance(hypothesis, truth, normalize=norm, name='edit_distance')
示例14: cer
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import edit_distance [as 別名]
def cer(y_true, y_pred, return_all=False):
labels_pred_sparse = one_hot_labels_to_sparse(y_pred)
labels_true_sparse = one_hot_labels_to_sparse(y_true)
ed = tf.edit_distance(tf.cast(labels_pred_sparse, tf.int32), labels_true_sparse)
cer = tf.reduce_mean(ed)
if return_all:
return cer, ed
else:
return cer
示例15: _get_testing
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import edit_distance [as 別名]
def _get_testing( rnn_logits,sequence_length,label,label_length,
continuous_eval, lexicon, lexicon_prior ):
"""Create ops for testing (all scalars):
loss: CTC loss function value,
label_error: batch level edit distance on beam search max
sequence_error: batch level sequence error rate
"""
with tf.name_scope( "train" ):
# Reduce by mean (rather than sum) if doing continuous evaluation
batch_loss = model.ctc_loss_layer( rnn_logits,label,sequence_length,
reduce_mean=continuous_eval)
with tf.name_scope( "test" ):
predictions,_ = _get_output( rnn_logits, sequence_length,
lexicon, lexicon_prior )
hypothesis = tf.cast( predictions[0], tf.int32 ) # for edit_distance
# Per-sequence statistic
num_label_errors = tf.edit_distance( hypothesis, label,
normalize=False )
# Per-batch summary counts
batch_num_label_errors = tf.reduce_sum( num_label_errors)
batch_num_sequence_errors = tf.count_nonzero( num_label_errors, axis=0 )
batch_num_labels = tf.reduce_sum( label_length )
# Wide integer type casts (prefer unsigned, but truediv dislikes those)
batch_num_label_errors = tf.cast( batch_num_label_errors, tf.int64 )
batch_num_sequence_errors = tf.cast( batch_num_sequence_errors,
tf.int64 )
batch_num_labels = tf.cast( batch_num_labels, tf.int64)
return batch_loss, batch_num_label_errors, batch_num_sequence_errors, \
batch_num_labels, predictions