本文整理匯總了Python中tensorflow.dynamic_partition方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.dynamic_partition方法的具體用法?Python tensorflow.dynamic_partition怎麽用?Python tensorflow.dynamic_partition使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.dynamic_partition方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: scatter_update
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import dynamic_partition [as 別名]
def scatter_update(cls, factor, indices, values, sharding_func):
"""Helper function for doing sharded scatter update."""
assert isinstance(factor, list)
if len(factor) == 1:
with ops.colocate_with(factor[0]):
# TODO(agarwal): assign instead of scatter update for full batch update.
return tf.scatter_update(factor[0], indices, values).op
else:
num_shards = len(factor)
assignments, new_ids = sharding_func(indices)
assert assignments is not None
assignments = tf.cast(assignments, tf.int32)
sharded_ids = tf.dynamic_partition(new_ids, assignments, num_shards)
sharded_values = tf.dynamic_partition(values, assignments, num_shards)
updates = []
for i in xrange(num_shards):
updates.append(tf.scatter_update(factor[i],
sharded_ids[i],
sharded_values[i]))
return tf.group(*updates)
示例2: call
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import dynamic_partition [as 別名]
def call(self, inputs):
"""Perform M steps of set2set gather,
Detailed descriptions in: https://arxiv.org/abs/1511.06391
"""
atom_features, atom_split = inputs
c = tf.zeros((self.batch_size, self.n_hidden))
h = tf.zeros((self.batch_size, self.n_hidden))
for i in range(self.M):
q_expanded = tf.gather(h, atom_split)
e = tf.reduce_sum(atom_features * q_expanded, 1)
e_mols = tf.dynamic_partition(e, atom_split, self.batch_size)
# Add another value(~-Inf) to prevent error in softmax
e_mols = [
tf.concat([e_mol, tf.constant([-1000.])], 0) for e_mol in e_mols
]
a = tf.concat([tf.nn.softmax(e_mol)[:-1] for e_mol in e_mols], 0)
r = tf.math.segment_sum(
tf.reshape(a, [-1, 1]) * atom_features, atom_split)
# Model using this layer must set pad_batches=True
q_star = tf.concat([h, r], axis=1)
h, c = self.LSTMStep(q_star, c)
return q_star
示例3: _last_relevant
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import dynamic_partition [as 別名]
def _last_relevant(outputs, sequence_length):
"""Deprecated"""
batch_size = tf.shape(outputs)[0]
max_length = outputs.get_shape()[1]
output_size = outputs.get_shape()[2]
index = tf.range(0, batch_size) * max_length + (sequence_length - 1)
flat = tf.reshape(outputs, [-1, output_size])
last_timesteps = tf.gather(flat, index) # very slow
# mask = tf.sign(index)
# last_timesteps = tf.boolean_mask(flat, mask)
# # Creating a vector of 0s and 1s that will specify what timesteps to choose.
# partitions = tf.reduce_sum(tf.one_hot(index, tf.shape(flat)[0], dtype='int32'), 0)
# # Selecting the elements we want to choose.
# _, last_timesteps = tf.dynamic_partition(flat, partitions, 2) # (batch_size, n_dim)
# https://stackoverflow.com/questions/35892412/tensorflow-dense-gradient-explanation
return last_timesteps
示例4: select_present
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import dynamic_partition [as 別名]
def select_present(x, presence, batch_size=1, name='select_present'):
with tf.variable_scope(name):
presence = 1 - tf.to_int32(presence) # invert mask
bs = x.get_shape()[0]
if bs != None: # here type(bs) is tf.Dimension and == is ok
batch_size = int(bs)
num_partitions = 2 * batch_size
r = tf.range(0, num_partitions, 2)
r.set_shape(tf.TensorShape(batch_size))
r = broadcast_against(r, presence)
presence += r
selected = tf.dynamic_partition(x, presence, num_partitions)
selected = tf.concat(axis=0, values=selected)
selected = tf.reshape(selected, tf.shape(x))
return selected
示例5: filter_valids
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import dynamic_partition [as 別名]
def filter_valids(t, valid, name='filter_valids'):
"""Filter out tensor using valid array.
Args:
t (tf.Tensor): The tensor to filter.
valid (list[float]): Array of length of the valid values (either
0 or 1).
name (string): Name of the operation.
Returns:
tf.Tensor: Filtered Tensor.
"""
# Must round before cast to prevent floating-error
return tf.dynamic_partition(t,
tf.cast(tf.round(valid), tf.int32),
2,
name=name)[1]
示例6: testSimpleOneDimensional
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import dynamic_partition [as 別名]
def testSimpleOneDimensional(self):
with self.test_session() as sess:
data = tf.constant([0, 13, 2, 39, 4, 17])
indices = tf.constant([0, 0, 2, 3, 2, 1])
partitions = tf.dynamic_partition(data, indices, num_partitions=4)
partition_vals = sess.run(partitions)
self.assertAllEqual([0, 13], partition_vals[0])
self.assertAllEqual([17], partition_vals[1])
self.assertAllEqual([2, 4], partition_vals[2])
self.assertAllEqual([39], partition_vals[3])
# Vector data input to DynamicPartition results in
# `num_partitions` vectors of unknown length.
self.assertEqual([None], partitions[0].get_shape().as_list())
self.assertEqual([None], partitions[1].get_shape().as_list())
self.assertEqual([None], partitions[2].get_shape().as_list())
self.assertEqual([None], partitions[3].get_shape().as_list())
示例7: testSimpleTwoDimensional
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import dynamic_partition [as 別名]
def testSimpleTwoDimensional(self):
with self.test_session() as sess:
data = tf.constant([[0, 1, 2], [3, 4, 5], [6, 7, 8],
[9, 10, 11], [12, 13, 14], [15, 16, 17]])
indices = tf.constant([0, 0, 2, 3, 2, 1])
partitions = tf.dynamic_partition(data, indices, num_partitions=4)
partition_vals = sess.run(partitions)
self.assertAllEqual([[0, 1, 2], [3, 4, 5]], partition_vals[0])
self.assertAllEqual([[15, 16, 17]], partition_vals[1])
self.assertAllEqual([[6, 7, 8], [12, 13, 14]], partition_vals[2])
self.assertAllEqual([[9, 10, 11]], partition_vals[3])
# Vector data input to DynamicPartition results in
# `num_partitions` matrices with an unknown number of rows, and 3 columns.
self.assertEqual([None, 3], partitions[0].get_shape().as_list())
self.assertEqual([None, 3], partitions[1].get_shape().as_list())
self.assertEqual([None, 3], partitions[2].get_shape().as_list())
self.assertEqual([None, 3], partitions[3].get_shape().as_list())
示例8: testHigherRank
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import dynamic_partition [as 別名]
def testHigherRank(self):
np.random.seed(7)
with self.test_session() as sess:
for n in 2, 3:
for shape in (4,), (4, 5), (4, 5, 2):
partitions = np.random.randint(n, size=np.prod(shape)).reshape(shape)
for extra_shape in (), (6,), (6, 7):
data = np.random.randn(*(shape + extra_shape))
partitions_t = tf.constant(partitions, dtype=tf.int32)
data_t = tf.constant(data)
outputs = tf.dynamic_partition(
data_t, partitions_t, num_partitions=n)
self.assertEqual(n, len(outputs))
outputs_val = sess.run(outputs)
for i, output in enumerate(outputs_val):
self.assertAllEqual(output, data[partitions == i])
# Test gradients
outputs_grad = [7 * output for output in outputs_val]
grads = tf.gradients(outputs, [data_t, partitions_t], outputs_grad)
self.assertEqual(grads[1], None) # Partitions has no gradients
self.assertAllEqual(7 * data, sess.run(grads[0]))
示例9: split_apply_merge
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import dynamic_partition [as 別名]
def split_apply_merge(inp, partitions, fns):
"""Split input according to partitions. Pass results through fns and merge.
Args:
inp: the input vector
partitions: tensor of same length as input vector, having values 0, 1
fns: the two functions.
Returns:
the vector routed, where routed[i] = fns[partitions[i]](inp[i])
"""
new_inputs = tf.dynamic_partition(inp, partitions, len(fns))
new_outputs = [fns[i](x) for i, x in enumerate(new_inputs)]
new_indices = tf.dynamic_partition(
tf.range(0, inp.get_shape()[0]), partitions, len(fns))
return tf.dynamic_stitch(new_indices, new_outputs)
示例10: _arrange_back_fn
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import dynamic_partition [as 別名]
def _arrange_back_fn(list_tensor_1d_mask_1d):
"""Arranges back tensor_1d to restore original order
modified by `_rearrange_fn` according to mask_1d:
- number of 0s in mask_1d values on the left are set to
their corresponding places where mask_1d=0,
- number of 1s in mask_1d values on the right are set to
their corresponding places where mask_1d=1"""
tensor_1d, mask_1d = list_tensor_1d_mask_1d
mask_indices = tf.dynamic_partition(tf.range(tf.shape(tensor_1d)[0]),
mask_1d, 2)
mask_sum = tf.reduce_sum(mask_1d, axis=0)
partitioned_tensor = [tf.zeros_like(tensor_1d[:-mask_sum]),
tensor_1d[-mask_sum:]]
return tf.dynamic_stitch(mask_indices, partitioned_tensor)
示例11: Dispatch
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import dynamic_partition [as 別名]
def Dispatch(self, d_tensors):
"""Reshuffles input `Tensor`s to produce output `Tensor`s.
The dimensions of all input and output `Tensor`s match, except for
dimension 0. In dimension 0, the input `Tensor`s match the corresponding
`gates` `Tensor`s which were passed to the constructor.
Args:
d_tensors: a list of `Tensor`s, one per datashard.
Returns:
a list of `Tensor`s, one per expert.
"""
parts = self._data_parallelism(tf.dynamic_partition, d_tensors, self._gates,
self._model_parallelism.n)
parts_by_expert = TransposeListOfLists(parts)
x_tensors = self._model_parallelism(tf.concat, parts_by_expert, 0)
return x_tensors
示例12: create_inverse_model
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import dynamic_partition [as 別名]
def create_inverse_model(self, encoded_state, encoded_next_state):
"""
Creates inverse model TensorFlow ops for Curiosity module.
Predicts action taken given current and future encoded states.
:param encoded_state: Tensor corresponding to encoded current state.
:param encoded_next_state: Tensor corresponding to encoded next state.
"""
combined_input = tf.concat([encoded_state, encoded_next_state], axis=1)
hidden = tf.layers.dense(combined_input, 256, activation=self.swish)
if self.brain.vector_action_space_type == "continuous":
pred_action = tf.layers.dense(hidden, self.a_size, activation=None)
squared_difference = tf.reduce_sum(tf.squared_difference(pred_action, self.selected_actions), axis=1)
self.inverse_loss = tf.reduce_mean(tf.dynamic_partition(squared_difference, self.mask, 2)[1])
else:
pred_action = tf.layers.dense(hidden, self.a_size, activation=tf.nn.softmax)
cross_entropy = tf.reduce_sum(-tf.log(pred_action + 1e-10) * self.selected_actions, axis=1)
self.inverse_loss = tf.reduce_mean(tf.dynamic_partition(cross_entropy, self.mask, 2)[1])
示例13: create_forward_model
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import dynamic_partition [as 別名]
def create_forward_model(self, encoded_state, encoded_next_state):
"""
Creates forward model TensorFlow ops for Curiosity module.
Predicts encoded future state based on encoded current state and given action.
:param encoded_state: Tensor corresponding to encoded current state.
:param encoded_next_state: Tensor corresponding to encoded next state.
"""
combined_input = tf.concat([encoded_state, self.selected_actions], axis=1)
hidden = tf.layers.dense(combined_input, 256, activation=self.swish)
# We compare against the concatenation of all observation streams, hence `self.v_size + int(self.o_size > 0)`.
pred_next_state = tf.layers.dense(hidden, self.curiosity_enc_size * (self.v_size + int(self.o_size > 0)),
activation=None)
squared_difference = 0.5 * tf.reduce_sum(tf.squared_difference(pred_next_state, encoded_next_state), axis=1)
self.intrinsic_reward = tf.clip_by_value(self.curiosity_strength * squared_difference, 0, 1)
self.forward_loss = tf.reduce_mean(tf.dynamic_partition(squared_difference, self.mask, 2)[1])
示例14: find_obj
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import dynamic_partition [as 別名]
def find_obj(sentence, s_mask, classes, scores, num):
"""Computes the object reward for one sentence."""
shape = tf.shape(sentence)
sentence = tf.boolean_mask(sentence, s_mask)
def body(x):
idx = tf.to_int32(tf.where(tf.equal(sentence, x)))
idx = tf.cond(tf.shape(idx)[0] > 0, lambda: idx[0, 0],
lambda: tf.constant(999, tf.int32))
return idx
classes = classes[:num]
scores = scores[:num]
ind = tf.map_fn(body, classes, tf.int32)
mask = tf.not_equal(ind, 999)
miss, detected = tf.dynamic_partition(scores, tf.to_int32(mask), 2)
ind = tf.boolean_mask(ind, mask)
ret = tf.scatter_nd(tf.expand_dims(ind, 1), detected, shape)
return ret
示例15: triplet_loss
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import dynamic_partition [as 別名]
def triplet_loss(infer, labels, radius = 2.0):
"""
Args:
infer: inference concatenate together with 2 * batch_size
labels: 0 or 1 with batch_size
radius:
Return:
loss: triplet loss
"""
feature_1, feature_2 = tf.split(0,2,infer)
feature_diff = tf.reduce_sum(tf.square(feature_1 - feature_2), 1)
feature_list = tf.dynamic_partition(feature_diff, labels, 2)
pos_list = feature_list[1]
neg_list = (tf.maximum(0.0, radius * radius - feature_list[0]))
full_list = tf.concat(0,[pos_list, neg_list])
loss = tf.reduce_mean(full_list)
return loss