當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.dtype方法代碼示例

本文整理匯總了Python中tensorflow.dtype方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.dtype方法的具體用法?Python tensorflow.dtype怎麽用?Python tensorflow.dtype使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.dtype方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _bbox_to_mask

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import dtype [as 別名]
def _bbox_to_mask(yy, region_size, dtype):
    # trim bounding box exeeding region_size on top and left
    neg_part = tf.nn.relu(-yy[:2])
    core = tf.ones(tf.to_int32(tf.round(yy[2:] - neg_part)), dtype=dtype)

    y1 = tf.maximum(yy[0], 0.)
    x1 = tf.maximum(yy[1], 0.)

    y2 = tf.minimum(region_size[0], yy[0] + yy[2])
    x2 = tf.minimum(region_size[1], yy[1] + yy[3])

    padding = (y1, region_size[0] - y2, x1, region_size[1] - x2)
    padding = tf.reshape(tf.stack(padding), (-1, 2))
    padding = tf.to_int32(tf.round(padding))
    mask = tf.pad(core, padding)

    # trim bounding box exeeding region_size on bottom and right
    rs = tf.to_int32(tf.round(region_size))
    mask = mask[:rs[0], :rs[1]]
    mask.set_shape((None, None))
    return mask 
開發者ID:akosiorek,項目名稱:hart,代碼行數:23,代碼來源:tensor_ops.py

示例2: bbox_to_mask

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import dtype [as 別名]
def bbox_to_mask(bbox, region_size, output_size, dtype=tf.float32):
    """Creates a binary mask of size `region_size` where rectangle given by
    `bbox` is filled with ones and the rest is zeros. Finally, the binary mask
    is resized to `output_size` with bilinear interpolation.

    :param bbox: tensor of shape (..., 4)
    :param region_size: tensor of shape (..., 2)
    :param output_size: 2-tuple of ints
    :param dtype: tf.dtype
    :return: a tensor of shape = (..., output_size)
    """
    shape = tf.concat(axis=0, values=(tf.shape(bbox)[:-1], output_size))
    bbox = tf.reshape(bbox, (-1, 4))
    region_size = tf.reshape(region_size, (-1, 2))

    def create_mask(args):
        yy, region_size = args
        return _bbox_to_mask_fixed_size(yy, region_size, output_size, dtype)

    mask = tf.map_fn(create_mask, (bbox, region_size), dtype=dtype)
    return tf.reshape(mask, shape) 
開發者ID:akosiorek,項目名稱:hart,代碼行數:23,代碼來源:tensor_ops.py

示例3: loss_function_crossentropy_1D

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import dtype [as 別名]
def loss_function_crossentropy_1D( y_pred, y_target, class_weights=None, num_classes=None):
    """ Cross entropy loss function op, comparing 1D tensors for network prediction and target. Weights the classes \
        when calculating the loss to balance un-even training batches. If class weights are not provided, then no \
        weighting is done (weight of 1 assigned to each class).

    Args:
        y_pred (tensor): Output of network (1D vector of class scores). Shape [numSamples x numClasses].
        y_target (tensor): One-hot classification labels (1D vector). Shape [numSamples x numClasses].
        class_weights (tensor): Weight for each class. Shape [numClasses].
        num_classes (int):

    Returns:
        (tensor): Cross-entropy loss.
    """

    if class_weights==None:
        class_weights = tf.constant(1,shape=[num_classes],dtype=tf.dtypes.float32)

    sample_weights = tf.reduce_sum( tf.multiply(y_target, class_weights ), axis=1) # weight of each sample
    loss = tf.reduce_mean( tf.losses.softmax_cross_entropy(
        onehot_labels=y_target,logits=y_pred,weights=sample_weights ) )

    return loss 
開發者ID:lloydwindrim,項目名稱:hyperspectral-autoencoders,代碼行數:25,代碼來源:network_ops.py

示例4: balance_classes

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import dtype [as 別名]
def balance_classes(y_target,num_classes):
    """ Calculates the class weights needed to balance the classes, based on the number of samples of each class in the \
        batch of data.

    Args:
        y_target (tensor): One-hot classification labels (1D vector). Shape [numSamples x numClasses]
        num_classes (int):

    Returns:
        (tensor): A weighting for each class that balances their contribution to the loss. Shape [numClasses].
    """
    y_target = tf.reshape( y_target, [-1, num_classes] )
    class_count = tf.add( tf.reduce_sum( y_target, axis=0 ), tf.constant( [1]*num_classes, dtype=tf.float32 ) )
    class_weights = tf.multiply( tf.divide( tf.ones( ( 1, num_classes) ), class_count ), tf.reduce_max( class_count ) )

    return class_weights 
開發者ID:lloydwindrim,項目名稱:hyperspectral-autoencoders,代碼行數:18,代碼來源:network_ops.py

示例5: column_to_dtype

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import dtype [as 別名]
def column_to_dtype(feature, feature_conf):
    """Parse columns to tf.dtype
     Return: 
         similar to _csv_column_defaults()
     """
    _column_dtype_dic = OrderedDict()
    _column_dtype_dic['label'] = tf.int32
    for f in feature:
        if f in feature_conf:
            conf = feature_conf[f]
            if conf['type'] == 'category':
                if conf['transform'] == 'identity':  # identity category column need int type
                    _column_dtype_dic[f] = tf.int32
                else:
                    _column_dtype_dic[f] = tf.string
            else:
                _column_dtype_dic[f] = tf.float32  # 0.0 for float32
        else:
            _column_dtype_dic[f] = tf.string
    return _column_dtype_dic 
開發者ID:Lapis-Hong,項目名稱:wide_deep,代碼行數:22,代碼來源:util.py

示例6: get_datatype

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import dtype [as 別名]
def get_datatype():
    """Get the default datatype used for Tensors

    Returns
    -------
    dtype : tf.dtype or torch.dtype
        The current default datatype
    """
    if __SETTINGS__._DATATYPE is None:
        if get_backend() == 'pytorch':
            import torch
            return torch.float32
        else:
            import tensorflow as tf
            return tf.dtypes.float32
    else:
        return __SETTINGS__._DATATYPE 
開發者ID:brendanhasz,項目名稱:probflow,代碼行數:19,代碼來源:settings.py

示例7: set_datatype

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import dtype [as 別名]
def set_datatype(datatype):
    """Set the datatype to use for Tensors

    Parameters
    ----------
    datatype : tf.dtype or torch.dtype
        The default datatype to use
    """
    if get_backend() == 'pytorch':
        import torch
        if datatype is None or isinstance(datatype, torch.dtype):
            __SETTINGS__._DATATYPE = datatype
        else:
            raise TypeError('datatype must be a torch.dtype')
    else:
        import tensorflow as tf
        if datatype is None or isinstance(datatype, tf.dtypes.DType):
            __SETTINGS__._DATATYPE = datatype
        else:
            raise TypeError('datatype must be a tf.dtypes.DType') 
開發者ID:brendanhasz,項目名稱:probflow,代碼行數:22,代碼來源:settings.py

示例8: _placeholders_from_graphs_tuple

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import dtype [as 別名]
def _placeholders_from_graphs_tuple(graph, force_dynamic_num_graphs=True):
  """Creates a `graphs.GraphsTuple` of placeholders that matches a numpy graph.

  Args:
    graph: A `graphs.GraphsTuple` that contains numpy data.
    force_dynamic_num_graphs: A `bool` that forces the batch dimension to be
      dynamic. Defaults to `True`.

  Returns:
    A `graphs.GraphsTuple` containing placeholders.
  """
  graph_dtypes = graph.map(
      lambda v: tf.as_dtype(v.dtype) if v is not None else None, ALL_FIELDS)
  graph_shapes = graph.map(lambda v: list(v.shape) if v is not None else None,
                           ALL_FIELDS)
  return _build_placeholders_from_specs(
      graph_dtypes,
      graph_shapes,
      force_dynamic_num_graphs=force_dynamic_num_graphs) 
開發者ID:deepmind,項目名稱:graph_nets,代碼行數:21,代碼來源:utils_tf.py

示例9: _populate_number_fields

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import dtype [as 別名]
def _populate_number_fields(data_dict):
  """Returns a dict with the number fields N_NODE, N_EDGE filled in.

  The N_NODE field is filled if the graph contains a non-`None` NODES field;
  otherwise, it is set to 0.
  The N_EDGE field is filled if the graph contains a non-`None` RECEIVERS field;
  otherwise, it is set to 0.

  Args:
    data_dict: An input `dict`.

  Returns:
    The data `dict` with number fields.
  """
  dct = data_dict.copy()
  for number_field, data_field in [[N_NODE, NODES], [N_EDGE, RECEIVERS]]:
    if dct.get(number_field) is None:
      if dct[data_field] is not None:
        dct[number_field] = tf.shape(dct[data_field])[0]
      else:
        dct[number_field] = tf.constant(0, dtype=tf.int32)
  return dct 
開發者ID:deepmind,項目名稱:graph_nets,代碼行數:24,代碼來源:utils_tf.py

示例10: _to_compatible_data_dicts

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import dtype [as 別名]
def _to_compatible_data_dicts(data_dicts):
  """Convert the content of `data_dicts` to tensors of the right type.

  All fields are converted to `Tensor`s. The index fields (`SENDERS` and
  `RECEIVERS`) and number fields (`N_NODE`, `N_EDGE`) are cast to `tf.int32`.

  Args:
    data_dicts: An iterable of dictionaries with keys `ALL_KEYS` and
      values either `None`s, or quantities that can be converted to `Tensor`s.

  Returns:
    A list of dictionaries containing `Tensor`s or `None`s.
  """
  results = []
  for data_dict in data_dicts:
    result = {}
    for k, v in data_dict.items():
      if v is None:
        result[k] = None
      else:
        dtype = tf.int32 if k in [SENDERS, RECEIVERS, N_NODE, N_EDGE] else None
        result[k] = tf.convert_to_tensor(v, dtype)
    results.append(result)
  return results 
開發者ID:deepmind,項目名稱:graph_nets,代碼行數:26,代碼來源:utils_tf.py

示例11: _check_valid_index

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import dtype [as 別名]
def _check_valid_index(index, element_name):
  """Verifies if a value with `element_name` is a valid index."""
  if isinstance(index, int):
    return True
  elif isinstance(index, tf.Tensor):
    if index.dtype != tf.int32 and index.dtype != tf.int64:
      raise TypeError(
          "Invalid tensor `{}` parameter. Valid tensor indices must have "
          "types tf.int32 or tf.int64, got {}."
          .format(element_name, index.dtype))
    if index.shape.as_list():
      raise TypeError(
          "Invalid tensor `{}` parameter. Valid tensor indices must be scalars "
          "with shape [], got{}"
          .format(element_name, index.shape.as_list()))
    return True
  else:
    raise TypeError(
        "Invalid `{}` parameter. Valid tensor indices must be integers "
        "or tensors, got {}."
        .format(element_name, type(index))) 
開發者ID:deepmind,項目名稱:graph_nets,代碼行數:23,代碼來源:utils_tf.py

示例12: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import dtype [as 別名]
def __init__(self, shape, dtype=tf.float32, name=None):
        """Creates a placeholder for a batch of tensors of a given shape and dtype

        Parameters
        ----------
        shape: [int]
            shape of a single elemenet of the batch
        dtype: tf.dtype
            number representation used for tensor contents
        name: str
            name of the underlying placeholder
        """
        super().__init__(tf.placeholder(dtype, [None] + list(shape), name=name)) 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:15,代碼來源:utils.py

示例13: _bbox_to_mask_fixed_size

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import dtype [as 別名]
def _bbox_to_mask_fixed_size(yy, region_size, output_size, dtype):

    mask = _bbox_to_mask(yy, region_size, dtype)

    nonzero_region = tf.greater(tf.reduce_prod(tf.shape(mask)), 0)
    mask = tf.cond(nonzero_region, lambda: mask, lambda: tf.zeros(output_size, dtype))
    mask = tf.image.resize_images(mask[..., tf.newaxis], output_size)[..., 0]
    return mask 
開發者ID:akosiorek,項目名稱:hart,代碼行數:10,代碼來源:tensor_ops.py

示例14: is_object_array

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import dtype [as 別名]
def is_object_array(p):
    """Returns True iff p is an object array.

    Args:
        p (Any): object to be checked

    Returns:
        bool: True iff p is a NumPy object array
    """
    return isinstance(p, np.ndarray) and p.dtype == object 
開發者ID:XanaduAI,項目名稱:strawberryfields,代碼行數:12,代碼來源:parameters.py

示例15: gather_indexes

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import dtype [as 別名]
def gather_indexes(sequence_tensor, positions):
  """Gathers the vectors at the specific positions.

  Args:
      sequence_tensor: Sequence output of `BertModel` layer of shape
        (`batch_size`, `seq_length`, num_hidden) where num_hidden is number of
        hidden units of `BertModel` layer.
      positions: Positions ids of tokens in sequence to mask for pretraining of
        with dimension (batch_size, max_predictions_per_seq) where
        `max_predictions_per_seq` is maximum number of tokens to mask out and
        predict per each sequence.

  Returns:
      Masked out sequence tensor of shape (batch_size * max_predictions_per_seq,
      num_hidden).
  """
  sequence_shape = modeling.get_shape_list(
      sequence_tensor, name='sequence_output_tensor')
  batch_size = sequence_shape[0]
  seq_length = sequence_shape[1]
  width = sequence_shape[2]

  flat_offsets = tf.keras.backend.reshape(
      tf.range(0, batch_size, dtype=tf.int32) * seq_length, [-1, 1])
  flat_positions = tf.keras.backend.reshape(positions + flat_offsets, [-1])
  flat_sequence_tensor = tf.keras.backend.reshape(
      sequence_tensor, [batch_size * seq_length, width])
  output_tensor = tf.gather(flat_sequence_tensor, flat_positions)

  return output_tensor 
開發者ID:ShivangShekhar,項目名稱:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代碼行數:32,代碼來源:bert_models.py


注:本文中的tensorflow.dtype方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。