當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.double方法代碼示例

本文整理匯總了Python中tensorflow.double方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.double方法的具體用法?Python tensorflow.double怎麽用?Python tensorflow.double使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.double方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: auroc

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import double [as 別名]
def auroc(y_true, y_pred):
    return tf.py_func(roc_auc_score, (y_true, y_pred), tf.double) 
開發者ID:ShenDezhou,項目名稱:icme2019,代碼行數:4,代碼來源:auc_util.py

示例2: auc

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import double [as 別名]
def auc(y, p):
        return tf.py_function(roc_auc_score, (y, p), tf.double) 
開發者ID:jeongyoonlee,項目名稱:Kaggler,代碼行數:4,代碼來源:categorical.py

示例3: test_model_predict

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import double [as 別名]
def test_model_predict(self):
    predictions = [{'output_1': [0.901], 'output_2': [0.997]}]
    builder = http.RequestMockBuilder({
        'ml.projects.predict':
            (None, self._make_response_body(predictions, successful=True))
    })
    resource = discovery.build(
        'ml',
        'v1',
        http=http.HttpMock(self._discovery_testdata_dir,
                           {'status': http_client.OK}),
        requestBuilder=builder)
    with mock.patch('googleapiclient.discovery.' 'build') as response_mock:
      response_mock.side_effect = lambda service, version: resource
      inference_spec_type = model_spec_pb2.InferenceSpecType(
          ai_platform_prediction_model_spec=model_spec_pb2
          .AIPlatformPredictionModelSpec(
              project_id='test-project',
              model_name='test-model',
          ))

      prediction_log = prediction_log_pb2.PredictionLog()
      prediction_log.predict_log.response.outputs['output_1'].CopyFrom(
          tf.make_tensor_proto(values=[0.901], dtype=tf.double, shape=(1, 1)))
      prediction_log.predict_log.response.outputs['output_2'].CopyFrom(
          tf.make_tensor_proto(values=[0.997], dtype=tf.double, shape=(1, 1)))

      self._set_up_pipeline(inference_spec_type)
      assert_that(self.pcoll, equal_to([prediction_log]))
      self._run_inference_with_beam() 
開發者ID:tensorflow,項目名稱:tfx-bsl,代碼行數:32,代碼來源:run_inference_test.py

示例4: _construct_test_bucketization_parameters

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import double [as 別名]
def _construct_test_bucketization_parameters():
  args_without_dtype = (
      (range(1, 10), [4, 7], False, None, False, False),
      (range(1, 100), [25, 50, 75], False, None, False, False),

      # The following is similar to range(1, 100) test above, except that
      # only odd numbers are in the input; so boundaries differ (26 -> 27 and
      # 76 -> 77).
      (range(1, 100, 2), [24, 50, 75], False, None, False, False),

      # Test some inversely sorted inputs, and with different strides, and
      # boundaries/buckets.
      (range(9, 0, -1), [4, 7], False, None, False, False),
      (range(19, 0, -1), [10], False, None, False, False),
      (range(99, 0, -1), [50], False, None, False, False),
      (range(99, 0, -1), [34, 67], False, None, False, False),
      (range(99, 0, -2), [33, 67], False, None, False, False),
      (range(99, 0, -1), range(10, 100, 10), False, None, False, False),

      # These tests do a random shuffle of the inputs, which must not affect the
      # boundaries (or the computed buckets).
      (range(99, 0, -1), range(10, 100, 10), True, None, False, False),
      (range(1, 100), range(10, 100, 10), True, None, False, False),

      # The following test is with multiple batches (3 batches with default
      # batch of 1000).
      (range(1, 3000), [1499], False, None, False, False),
      (range(1, 3000), [1000, 2000], False, None, False, False),

      # Test with specific error for bucket boundaries. This is same as the test
      # above with 3 batches and a single boundary, but with a stricter error
      # tolerance (0.001) than the default error (0.01). The result is that the
      # computed boundary in the test below is closer to the middle (1501) than
      # that computed by the boundary of 1503 above.
      (range(1, 3000), [1500], False, 0.001, False, False),

      # Test with specific error for bucket boundaries, with more relaxed error
      # tolerance (0.1) than the default (0.01). Now the boundary diverges
      # further to 1504 (compared to boundary of 1501 with error 0.001, and
      # boundary of 1503 with error 0.01).
      (range(1, 3000), [1503], False, 0.1, False, False),

      # Tests for tft.apply_buckets.
      (range(1, 100), [25, 50, 75], False, 0.00001, True, False),
      # TODO(b/78569039): Enable this test.
      # (range(1, 100), [26, 51, 76], False, 0.00001, True, True),
  )
  dtypes = (tf.int32, tf.int64, tf.float32, tf.float64, tf.double)
  return (x + (dtype,) for x in args_without_dtype for dtype in dtypes) 
開發者ID:tensorflow,項目名稱:transform,代碼行數:51,代碼來源:bucketize_integration_test.py

示例5: convert_cast

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import double [as 別名]
def convert_cast(node, params, layers, lambda_func, node_name, keras_name):
    """
    Convert Cast layer
    :param node: current operation node
    :param params: operation attributes
    :param layers: available keras layers
    :param lambda_func: function for keras Lambda layer
    :param node_name: internal converter name
    :param keras_name: resulting layer name
    :return: None
    """
    logger = logging.getLogger('onnx2keras:cast')

    if len(node.input) != 1:
        assert AttributeError('More than 1 input for cast layer.')

    if is_numpy(layers[node.input[0]]):
        logger.debug('Cast numpy array')

        cast_map = {
            1: np.float32,
            2: np.uint8,
            3: np.int8,
            5: np.int16,
            6: np.int32,
            7: np.int64,
            9: np.bool,
            10: np.float16,
            11: np.double,
        }

        layers[node_name] = cast_map[params['to']](node.input[0])
    else:
        input_0 = ensure_tf_type(layers[node.input[0]], name="%s_const" % keras_name)

        def target_layer(x, dtype=params['to']):
            import tensorflow as tf
            cast_map = {
                1: tf.float32,
                2: tf.uint8,
                3: tf.int8,
                5: tf.int16,
                6: tf.int32,
                7: tf.int64,
                9: tf.bool,
                10: tf.float16,
                11: tf.double,
            }
            return tf.cast(x, cast_map[dtype])

        lambda_layer = keras.layers.Lambda(target_layer, name=keras_name)
        layers[node_name] = lambda_layer(input_0)
        lambda_func[keras_name] = target_layer 
開發者ID:nerox8664,項目名稱:onnx2keras,代碼行數:55,代碼來源:operation_layers.py


注:本文中的tensorflow.double方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。