本文整理匯總了Python中tensorflow.div方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.div方法的具體用法?Python tensorflow.div怎麽用?Python tensorflow.div使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.div方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: preprocess_image
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import div [as 別名]
def preprocess_image(image, output_height, output_width, is_training):
"""Preprocesses the given image.
Args:
image: A `Tensor` representing an image of arbitrary size.
output_height: The height of the image after preprocessing.
output_width: The width of the image after preprocessing.
is_training: `True` if we're preprocessing the image for training and
`False` otherwise.
Returns:
A preprocessed image.
"""
image = tf.to_float(image)
image = tf.image.resize_image_with_crop_or_pad(
image, output_width, output_height)
image = tf.subtract(image, 128.0)
image = tf.div(image, 128.0)
return image
示例2: ExpectScaledSize
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import div [as 別名]
def ExpectScaledSize(self, spec, target_shape, factor=1):
"""Tests that the output of the graph of the given spec has target_shape."""
with tf.Graph().as_default():
with self.test_session() as sess:
self.SetupInputs()
# Only the placeholders are given at construction time.
vgsl = vgslspecs.VGSLSpecs(self.ph_widths, self.ph_heights, True)
outputs = vgsl.Build(self.ph_image, spec)
# Compute the expected output widths from the given scale factor.
target_widths = tf.div(self.in_widths, factor).eval()
target_heights = tf.div(self.in_heights, factor).eval()
# Run with the 'real' data.
tf.global_variables_initializer().run()
res_image, res_widths, res_heights = sess.run(
[outputs, vgsl.GetLengths(2), vgsl.GetLengths(1)],
feed_dict={self.ph_image: self.in_image,
self.ph_widths: self.in_widths,
self.ph_heights: self.in_heights})
self.assertEqual(tuple(res_image.shape), target_shape)
if target_shape[1] > 1:
self.assertEqual(tuple(res_heights), tuple(target_heights))
if target_shape[2] > 1:
self.assertEqual(tuple(res_widths), tuple(target_widths))
示例3: drop_path
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import div [as 別名]
def drop_path(inputs, keep_prob, is_training=True, scope=None):
"""Drops out a whole example hiddenstate with the specified probability.
"""
with tf.name_scope(scope, 'drop_path', [inputs]):
net = inputs
if is_training:
batch_size = tf.shape(net)[0]
noise_shape = [batch_size, 1, 1, 1]
random_tensor = keep_prob
random_tensor += tf.random_uniform(noise_shape, dtype=tf.float32)
binary_tensor = tf.floor(random_tensor)
net = tf.div(net, keep_prob) * binary_tensor
return net
# =========================================================================== #
# Useful methods
# =========================================================================== #
示例4: normalize_score
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import div [as 別名]
def normalize_score(log_probs, sequence_lengths, length_penalty_weight):
"""Normalizes scores for beam search hypotheses by the length.
Args:
log_probs: The log probabilities with shape
`[beam_width, vocab_size]`.
sequence_lengths: The sequence length of all hypotheses, a tensor
of shape `[beam_size, vocab_size]`.
length_penalty_weight: A float value, a scalar that weights the length
penalty. Disabled with 0.0.
Returns:
score: The scores normalized by the length_penalty
"""
# Calculate the length penality
length_penality = tf.div(
(5. + tf.to_float(sequence_lengths))**length_penalty_weight,
(5. + 1.)**length_penalty_weight)
# NOTE: See details in https://arxiv.org/abs/1609.08144.
# Normalize log probabiltiies by the length penality
if length_penalty_weight is None or length_penalty_weight == 1:
score = log_probs
else:
score = log_probs / length_penality
return score
示例5: _apply_dense
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import div [as 別名]
def _apply_dense(self, grad, var):
lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype)
beta1_t = math_ops.cast(self._beta1_t, var.dtype.base_dtype)
beta2_t = math_ops.cast(self._beta2_t, var.dtype.base_dtype)
if var.dtype.base_dtype == tf.float16:
eps = 1e-7 # Can't use 1e-8 due to underflow -- not sure if it makes a big difference.
else:
eps = 1e-8
v = self.get_slot(var, "v")
v_t = v.assign(beta2_t * v + (1. - beta2_t) * tf.square(grad))
m = self.get_slot(var, "m")
m_t = m.assign( beta1_t * m + (1. - beta1_t) * grad )
v_t_hat = tf.div(v_t, 1. - beta2_t)
m_t_hat = tf.div(m_t, 1. - beta1_t)
g_t = tf.div( m_t, tf.sqrt(v_t)+eps )
g_t_1 = self.get_slot(var, "g")
g_t = g_t_1.assign( g_t )
var_update = state_ops.assign_sub(var, 2. * lr_t * g_t - lr_t * g_t_1) #Adam would be lr_t * g_t
return control_flow_ops.group(*[var_update, m_t, v_t, g_t])
示例6: __call__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import div [as 別名]
def __call__(self, step):
# TODO(tf-mot): consider switch to divide for 1.XX also.
if hasattr(tf, 'div'):
divide = tf.div
else:
divide = tf.math.divide
# TODO(pulkitb): Replace function with tf.polynomial_decay
with tf.name_scope('polynomial_decay_pruning_schedule'):
p = tf.math.minimum(
1.0,
tf.math.maximum(
0.0,
divide(
tf.dtypes.cast(step - self.begin_step, tf.float32),
self.end_step - self.begin_step)))
sparsity = tf.math.add(
tf.math.multiply(self.initial_sparsity - self.final_sparsity,
tf.math.pow(1 - p, self.power)),
self.final_sparsity,
name='sparsity')
return (self._should_prune_in_step(step, self.begin_step, self.end_step,
self.frequency),
sparsity)
示例7: multi_view_att
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import div [as 別名]
def multi_view_att(ori_memory, att_w, dec_hidden, *args):
bsz, max_len, rnn_hsz = args
dec_hidden = att_w(dec_hidden) # b*f
ori_memory_t = tf.transpose(ori_memory, perm=[2, 0, 1]) # f*b*t
flatten_om = tf.layers.flatten(ori_memory_t)
beta_is = tf.exp(tf.tanh(tf.matmul(dec_hidden, flatten_om))) # b*b*t
beta_is = tf.reshape(beta_is, [bsz, bsz, max_len])
beta_is = tf.transpose(beta_is, perm=[2, 0, 1]) # t*b*b
beta_i_sum = tf.reduce_sum(beta_is, axis=0, keepdims=True)
beta_i_sum = tf.tile(beta_i_sum, [max_len, 1, 1])
beta_is = tf.div(beta_is, beta_i_sum)
ori_memory_t = tf.transpose(ori_memory, perm=[1, 0, 2])
return tf.reduce_sum(tf.matmul(beta_is, ori_memory_t), axis=0)
示例8: intra_decoder_atten
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import div [as 別名]
def intra_decoder_atten(w_dec, dec_hidden, dec_out):
"""
Args:
w_dec: w_dec_atten, size - [dec_hsz*dec_hsz]
dec_hidden: decode hidden/time, size - [bsz*dec_hsz]
dec_out: decode out, size - [bsz*time*dec_hsz]
Return:
dec_c_t: doc vector, size - [bsz*dec_hsz]
"""
pre_hiddens = tf.transpose(dec_out, perm=[1, 0, 2])
times = tf.shape(dec_out)[1]
# formulation 6
d_tts = tf.exp(tf.multiply(tf.tile(tf.expand_dims(
tf.matmul(dec_hidden, w_dec), 0), [times, 1, 1]), pre_hiddens))
# formulation 7
norm_d_tt = tf.tile(tf.reduce_sum(d_tts, 0, keep_dims=True), [times, 1, 1])
alpha_dec_tts = tf.div(d_tts, norm_d_tt)
# formulation 8
dec_c_t = tf.reduce_sum(tf.multiply(alpha_dec_tts, pre_hiddens), 0)
return dec_c_t
示例9: softmax_N
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import div [as 別名]
def softmax_N(tensor, name=None):
"""Apply softmax across last dimension of a tensor.
Args:
tensor: Input tensor.
name: Name for this op. If None, defaults to 'softmax_N'.
Returns:
A tensor with softmax-normalized values on the last dimension.
"""
with tf.name_scope(name, 'softmax_N', [tensor]):
exp_tensor = tf.exp(tensor)
reduction_indices = [tensor.get_shape().ndims - 1]
return tf.div(exp_tensor,
tf.reduce_sum(
exp_tensor, axis=reduction_indices, keep_dims=True))
示例10: contrastive_loss
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import div [as 別名]
def contrastive_loss(label, feat1, feat2, margin=1.0):
distance = tf.sqrt(1e-20+tf.reduce_sum(tf.pow(feat1-feat2, 2), 1, keep_dims=True))
# distance_norm = tf.add(tf.sqrt(tf.reduce_sum(tf.square(feat1), 1, keep_dims=True)), tf.sqrt(tf.reduce_sum(tf.square(feat2), 1, keep_dims=True)))
# distance = tf.div(distance, tf.stop_gradient(distance_norm+1e-10))
distance = tf.reshape(distance, [-1], name="distance")
input_shape_list = bert_utils.get_shape_list(feat1, expected_rank=[2])
batch_size = input_shape_list[0]
y = tf.cast(label, tf.float32)
# the smaller is better
tmp = y * tf.pow(distance, 2)
# when distance is larger than margin, then ignore gradient
tmp2 = (1-y) *tf.pow(tf.maximum((margin - distance), 0.0), 2)
per_example_loss = (tmp +tmp2)/2
return per_example_loss, distance
示例11: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import div [as 別名]
def __init__(
self, sequence_length, vocab_size, embedding_size, hidden_units, l2_reg_lambda, batch_size, trainableEmbeddings):
# Placeholders for input, output and dropout
self.input_x1 = tf.placeholder(tf.int32, [None, sequence_length], name="input_x1")
self.input_x2 = tf.placeholder(tf.int32, [None, sequence_length], name="input_x2")
self.input_y = tf.placeholder(tf.float32, [None], name="input_y")
self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")
# Keeping track of l2 regularization loss (optional)
l2_loss = tf.constant(0.0, name="l2_loss")
# Embedding layer
with tf.name_scope("embedding"):
self.W = tf.Variable(
tf.constant(0.0, shape=[vocab_size, embedding_size]),
trainable=trainableEmbeddings,name="W")
self.embedded_words1 = tf.nn.embedding_lookup(self.W, self.input_x1)
self.embedded_words2 = tf.nn.embedding_lookup(self.W, self.input_x2)
print self.embedded_words1
# Create a convolution + maxpool layer for each filter size
with tf.name_scope("output"):
self.out1=self.stackedRNN(self.embedded_words1, self.dropout_keep_prob, "side1", embedding_size, sequence_length, hidden_units)
self.out2=self.stackedRNN(self.embedded_words2, self.dropout_keep_prob, "side2", embedding_size, sequence_length, hidden_units)
self.distance = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(self.out1,self.out2)),1,keep_dims=True))
self.distance = tf.div(self.distance, tf.add(tf.sqrt(tf.reduce_sum(tf.square(self.out1),1,keep_dims=True)),tf.sqrt(tf.reduce_sum(tf.square(self.out2),1,keep_dims=True))))
self.distance = tf.reshape(self.distance, [-1], name="distance")
with tf.name_scope("loss"):
self.loss = self.contrastive_loss(self.input_y,self.distance, batch_size)
#### Accuracy computation is outside of this class.
with tf.name_scope("accuracy"):
self.temp_sim = tf.subtract(tf.ones_like(self.distance),tf.rint(self.distance), name="temp_sim") #auto threshold 0.5
correct_predictions = tf.equal(self.temp_sim, self.input_y)
self.accuracy=tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy")
示例12: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import div [as 別名]
def __init__(
self, sequence_length, vocab_size, embedding_size, hidden_units, l2_reg_lambda, batch_size):
# Placeholders for input, output and dropout
self.input_x1 = tf.placeholder(tf.int32, [None, sequence_length], name="input_x1")
self.input_x2 = tf.placeholder(tf.int32, [None, sequence_length], name="input_x2")
self.input_y = tf.placeholder(tf.float32, [None], name="input_y")
self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")
# Keeping track of l2 regularization loss (optional)
l2_loss = tf.constant(0.0, name="l2_loss")
# Embedding layer
with tf.name_scope("embedding"):
self.W = tf.Variable(
tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0),
trainable=True,name="W")
self.embedded_chars1 = tf.nn.embedding_lookup(self.W, self.input_x1)
#self.embedded_chars_expanded1 = tf.expand_dims(self.embedded_chars1, -1)
self.embedded_chars2 = tf.nn.embedding_lookup(self.W, self.input_x2)
#self.embedded_chars_expanded2 = tf.expand_dims(self.embedded_chars2, -1)
# Create a convolution + maxpool layer for each filter size
with tf.name_scope("output"):
self.out1=self.BiRNN(self.embedded_chars1, self.dropout_keep_prob, "side1", embedding_size, sequence_length, hidden_units)
self.out2=self.BiRNN(self.embedded_chars2, self.dropout_keep_prob, "side2", embedding_size, sequence_length, hidden_units)
self.distance = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(self.out1,self.out2)),1,keep_dims=True))
self.distance = tf.div(self.distance, tf.add(tf.sqrt(tf.reduce_sum(tf.square(self.out1),1,keep_dims=True)),tf.sqrt(tf.reduce_sum(tf.square(self.out2),1,keep_dims=True))))
self.distance = tf.reshape(self.distance, [-1], name="distance")
with tf.name_scope("loss"):
self.loss = self.contrastive_loss(self.input_y,self.distance, batch_size)
#### Accuracy computation is outside of this class.
with tf.name_scope("accuracy"):
self.temp_sim = tf.subtract(tf.ones_like(self.distance),tf.rint(self.distance), name="temp_sim") #auto threshold 0.5
correct_predictions = tf.equal(self.temp_sim, self.input_y)
self.accuracy=tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy")
示例13: call
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import div [as 別名]
def call(self, seq_value_len_list, mask=None, **kwargs):
if self.supports_masking:
if mask is None:
raise ValueError(
"When supports_masking=True,input must support masking")
uiseq_embed_list = seq_value_len_list
mask = tf.to_float(mask)
user_behavior_length = tf.reduce_sum(mask, axis=-1, keep_dims=True)
mask = tf.expand_dims(mask, axis=2)
else:
uiseq_embed_list, user_behavior_length = seq_value_len_list
mask = tf.sequence_mask(user_behavior_length,
self.seq_len_max, dtype=tf.float32)
mask = tf.transpose(mask, (0, 2, 1))
embedding_size = uiseq_embed_list.shape[-1]
mask = tf.tile(mask, [1, 1, embedding_size])
uiseq_embed_list *= mask
hist = uiseq_embed_list
if self.mode == "max":
return tf.reduce_max(hist, 1, keep_dims=True)
hist = tf.reduce_sum(hist, 1, keep_dims=False)
if self.mode == "mean":
hist = tf.div(hist, user_behavior_length+self.eps)
hist = tf.expand_dims(hist, axis=1)
return hist
示例14: getCosineSimilarity
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import div [as 別名]
def getCosineSimilarity(q, a):
q1 = tf.sqrt(tf.reduce_sum(tf.multiply(q, q), 1))
a1 = tf.sqrt(tf.reduce_sum(tf.multiply(a, a), 1))
mul = tf.reduce_sum(tf.multiply(q, a), 1)
cosSim = tf.div(mul, tf.multiply(q1, a1))
return cosSim
示例15: _gather_clone_loss
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import div [as 別名]
def _gather_clone_loss(clone, num_clones, regularization_losses):
"""Gather the loss for a single clone.
Args:
clone: A Clone namedtuple.
num_clones: The number of clones being deployed.
regularization_losses: Possibly empty list of regularization_losses
to add to the clone losses.
Returns:
A tensor for the total loss for the clone. Can be None.
"""
# The return value.
sum_loss = None
# Individual components of the loss that will need summaries.
clone_loss = None
regularization_loss = None
# Compute and aggregate losses on the clone device.
with tf.device(clone.device):
all_losses = []
clone_losses = tf.get_collection(tf.GraphKeys.LOSSES, clone.scope)
if clone_losses:
clone_loss = tf.add_n(clone_losses, name='clone_loss')
if num_clones > 1:
clone_loss = tf.div(clone_loss, 1.0 * num_clones,
name='scaled_clone_loss')
all_losses.append(clone_loss)
if regularization_losses:
regularization_loss = tf.add_n(regularization_losses,
name='regularization_loss')
all_losses.append(regularization_loss)
if all_losses:
sum_loss = tf.add_n(all_losses)
# Add the summaries out of the clone device block.
if clone_loss is not None:
tf.summary.scalar(clone.scope + '/clone_loss', clone_loss)
if regularization_loss is not None:
tf.summary.scalar('regularization_loss', regularization_loss)
return sum_loss