當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.disable_v2_behavior方法代碼示例

本文整理匯總了Python中tensorflow.disable_v2_behavior方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.disable_v2_behavior方法的具體用法?Python tensorflow.disable_v2_behavior怎麽用?Python tensorflow.disable_v2_behavior使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.disable_v2_behavior方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: tfp_schools_model

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import disable_v2_behavior [as 別名]
def tfp_schools_model(num_schools, treatment_stddevs):
    """Non-centered eight schools model for tfp."""
    import tensorflow_probability.python.edward2 as ed
    import tensorflow as tf

    if int(tf.__version__[0]) > 1:
        import tensorflow.compat.v1 as tf  # pylint: disable=import-error

        tf.disable_v2_behavior()

    avg_effect = ed.Normal(loc=0.0, scale=10.0, name="avg_effect")  # `mu`
    avg_stddev = ed.Normal(loc=5.0, scale=1.0, name="avg_stddev")  # `log(tau)`
    school_effects_standard = ed.Normal(
        loc=tf.zeros(num_schools), scale=tf.ones(num_schools), name="school_effects_standard"
    )  # `eta`
    school_effects = avg_effect + tf.exp(avg_stddev) * school_effects_standard  # `theta`
    treatment_effects = ed.Normal(
        loc=school_effects, scale=treatment_stddevs, name="treatment_effects"
    )  # `y`
    return treatment_effects 
開發者ID:arviz-devs,項目名稱:arviz,代碼行數:22,代碼來源:helpers.py

示例2: get_inference_data3

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import disable_v2_behavior [as 別名]
def get_inference_data3(self, data, eight_schools_params):
        """Read with observed Tensor var_names and dims."""
        import tensorflow as tf

        if int(tf.__version__[0]) > 1:
            import tensorflow.compat.v1 as tf  # pylint: disable=import-error

            tf.disable_v2_behavior()

        inference_data = from_tfp(
            data.obj,
            var_names=["mu", "tau", "eta"],
            model_fn=lambda: data.model(
                eight_schools_params["J"], eight_schools_params["sigma"].astype(np.float32)
            ),
            posterior_predictive_samples=100,
            posterior_predictive_size=3,
            observed=tf.convert_to_tensor(
                np.vstack(
                    (
                        eight_schools_params["y"],
                        eight_schools_params["y"],
                        eight_schools_params["y"],
                    )
                ).astype(np.float32),
                np.float32,
            ),
            coords={"school": np.arange(eight_schools_params["J"])},
            dims={"eta": ["school"], "obs": ["size_dim", "school"]},
        )
        return inference_data 
開發者ID:arviz-devs,項目名稱:arviz,代碼行數:33,代碼來源:test_data_tfp.py

示例3: tf_logs

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import disable_v2_behavior [as 別名]
def tf_logs(tmpdir_factory):

    import numpy as np
    try:
        import tensorflow.compat.v1 as tf
        tf.disable_v2_behavior()
    except ImportError:
        import tensorflow as tf

    x = np.random.rand(5)
    y = 3 * x + 1 + 0.05 * np.random.rand(5)

    a = tf.Variable(0.1)
    b = tf.Variable(0.)
    err = a*x+b-y

    loss = tf.norm(err)
    tf.summary.scalar("loss", loss)
    tf.summary.scalar("a", a)
    tf.summary.scalar("b", b)
    merged = tf.summary.merge_all()

    optimizor = tf.train.GradientDescentOptimizer(0.01).minimize(loss)

    with tf.Session() as sess:
        log_dir = tmpdir_factory.mktemp("logs", numbered=False)
        log_dir = str(log_dir)

        train_write = tf.summary.FileWriter(log_dir, sess.graph)
        tf.global_variables_initializer().run()
        for i in range(1000):
            _, merged_ = sess.run([optimizor, merged])
            train_write.add_summary(merged_, i)

    return log_dir 
開發者ID:lspvic,項目名稱:jupyter_tensorboard,代碼行數:37,代碼來源:test_tensorboard_integration.py

示例4: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import disable_v2_behavior [as 別名]
def __init__(
        self,
        *,
        posterior,
        var_names=None,
        model_fn=None,
        feed_dict=None,
        posterior_predictive_samples=100,
        posterior_predictive_size=1,
        chain_dim=None,
        observed=None,
        coords=None,
        dims=None
    ):

        self.posterior = posterior

        if var_names is None:
            self.var_names = []
            for i in range(0, len(posterior)):
                self.var_names.append("var_{0}".format(i))
        else:
            self.var_names = var_names

        self.model_fn = model_fn
        self.feed_dict = feed_dict
        self.posterior_predictive_samples = posterior_predictive_samples
        self.posterior_predictive_size = posterior_predictive_size
        self.observed = observed
        self.chain_dim = chain_dim
        self.coords = coords
        self.dims = dims

        import tensorflow_probability as tfp
        import tensorflow as tf
        import tensorflow_probability.python.edward2 as ed

        self.tfp = tfp
        self.tf = tf  # pylint: disable=invalid-name
        self.ed = ed  # pylint: disable=invalid-name

        if int(self.tf.__version__[0]) > 1:
            import tensorflow.compat.v1 as tf  # pylint: disable=import-error

            tf.disable_v2_behavior()
            self.tf = tf  # pylint: disable=invalid-name 
開發者ID:arviz-devs,項目名稱:arviz,代碼行數:48,代碼來源:io_tfp.py

示例5: tfp_noncentered_schools

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import disable_v2_behavior [as 別名]
def tfp_noncentered_schools(data, draws, chains):
    """Non-centered eight schools implementation for tfp."""
    import tensorflow_probability as tfp
    import tensorflow_probability.python.edward2 as ed
    import tensorflow as tf

    if int(tf.__version__[0]) > 1:
        import tensorflow.compat.v1 as tf  # pylint: disable=import-error

        tf.disable_v2_behavior()

    del chains

    log_joint = ed.make_log_joint_fn(tfp_schools_model)

    def target_log_prob_fn(avg_effect, avg_stddev, school_effects_standard):
        """Unnormalized target density as a function of states."""
        return log_joint(
            num_schools=data["J"],
            treatment_stddevs=data["sigma"].astype(np.float32),
            avg_effect=avg_effect,
            avg_stddev=avg_stddev,
            school_effects_standard=school_effects_standard,
            treatment_effects=data["y"].astype(np.float32),
        )

    states, kernel_results = tfp.mcmc.sample_chain(
        num_results=draws,
        num_burnin_steps=500,
        current_state=[
            tf.zeros([], name="init_avg_effect"),
            tf.zeros([], name="init_avg_stddev"),
            tf.ones([data["J"]], name="init_school_effects_standard"),
        ],
        kernel=tfp.mcmc.HamiltonianMonteCarlo(
            target_log_prob_fn=target_log_prob_fn, step_size=0.4, num_leapfrog_steps=3
        ),
    )

    with tf.Session() as sess:
        [states_, _] = sess.run([states, kernel_results])

    return tfp_schools_model, states_ 
開發者ID:arviz-devs,項目名稱:arviz,代碼行數:45,代碼來源:helpers.py

示例6: run_nn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import disable_v2_behavior [as 別名]
def run_nn(hdf5, experiment, code_size_1, code_size_2):
    # tf.disable_v2_behavior()

    exp_storage = hdf5["experiments"][experiment]

    for fold in exp_storage:

        experiment_cv = format_config("{experiment}_{fold}", {
            "experiment": experiment,
            "fold": fold,
        })

        X_train, y_train, \
        X_valid, y_valid, \
        X_test, y_test = load_fold(hdf5["patients"], exp_storage, fold)

        ae1_model_path = format_config("./data/models/{experiment}_autoencoder-1.ckpt", {
            "experiment": experiment_cv,
        })
        ae2_model_path = format_config("./data/models/{experiment}_autoencoder-2.ckpt", {
            "experiment": experiment_cv,
        })
        nn_model_path = format_config("./data/models/{experiment}_mlp.ckpt", {
            "experiment": experiment_cv,
        })

        reset()

        # Run first autoencoder
        run_autoencoder1(experiment_cv,
                         X_train, y_train, X_valid, y_valid, X_test, y_test,
                         model_path=ae1_model_path,
                         code_size=code_size_1)

        reset()

        # Run second autoencoder
        run_autoencoder2(experiment_cv,
                         X_train, y_train, X_valid, y_valid, X_test, y_test,
                         model_path=ae2_model_path,
                         prev_model_path=ae1_model_path,
                         prev_code_size=code_size_1,
                         code_size=code_size_2)

        reset()

        # Run multilayer NN with pre-trained autoencoders
        run_finetuning(experiment_cv,
                       X_train, y_train, X_valid, y_valid, X_test, y_test,
                       model_path=nn_model_path,
                       prev_model_1_path=ae1_model_path,
                       prev_model_2_path=ae2_model_path,
                       code_size_1=code_size_1,
                       code_size_2=code_size_2) 
開發者ID:lsa-pucrs,項目名稱:acerta-abide,代碼行數:56,代碼來源:nn.py


注:本文中的tensorflow.disable_v2_behavior方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。